期刊论文详细信息
BMC Microbiology
Electrochemical selection and characterization of a high current-generating Shewanella oneidensis mutant with altered cell-surface morphology and biofilm-related gene expression
Kazuya Watanabe3  Kazuhito Hashimoto1  Nozomi Tajima2  Hitomi Oba3  Atsushi Kouzuma3 
[1] Hashimoto Light Energy Conversion Project, ERATO/JST, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-8656, Tokyo, Japan;Present address: Advanced Technologies Research Laboratories, Idemitsu Kosan, 1200 Kamiizumi, Sodegaura 299-0293, Chiba, Japan;School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan
关键词: Bioelectrochemical systems;    Anode respiration;    Microbial fuel cell;    Extracellular electron transfer;   
Others  :  1140754
DOI  :  10.1186/1471-2180-14-190
 received in 2014-04-15, accepted in 2014-07-10,  发布年份 2014
PDF
【 摘 要 】

Background

Shewanella oneidensis MR-1 exhibits extracellular electron transfer (EET) activity that is influenced by various cellular components, including outer-membrane cytochromes, cell-surface polysaccharides (CPS), and regulatory proteins. Here, a random transposon-insertion mutant library of S. oneidensis MR-1 was screened after extended cultivation in electrochemical cells (ECs) with a working electrode poised at +0.2 V (vs. Ag/AgCl) to isolate mutants that adapted to electrode-respiring conditions and identify as-yet-unknown EET-related factors.

Results

Several mutants isolated from the enrichment culture exhibited rough morphology and extraordinarily large colonies on agar plates compared to wild-type MR-1. One of the isolated mutants, designated strain EC-2, produced 90% higher electric current than wild-type MR-1 in ECs and was found to have a transposon inserted in the SO_1860 (uvrY) gene, which encodes a DNA-binding response regulator of the BarA/UvrY two-component regulatory system. However, an in-frame deletion mutant of SO_1860 (∆SO_1860) did not exhibit a similar level of current generation as that of EC-2, suggesting that the enhanced current-generating capability of EC-2 was not simply due to the disruption of SO_1860. In both EC-2 and ∆SO_1860, the transcription of genes related to CPS synthesis was decreased compared to wild-type MR-1, suggesting that CPS negatively affects current generation. In addition, transcriptome analyses revealed that a number of genes, including those involved in biofilm formation, were differentially expressed in EC-2 compared to those in ∆SO_1860.

Conclusions

The present results indicate that the altered expression of the genes related to CPS biosynthesis and biofilm formation is associated with the distinct morphotype and high current-generating capability of strain EC-2, suggesting an important role of these genes in determining the EET activity of S. oneidensis.

【 授权许可】

   
2014 Kouzuma et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325103105862.pdf 971KB PDF download
Figure 7. 21KB Image download
Figure 6. 24KB Image download
Figure 5. 27KB Image download
Figure 4. 26KB Image download
Figure 3. 25KB Image download
Figure 2. 67KB Image download
Figure 1. 61KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Fredrickson JK, Romine MF, Beliaev AS, Auchtung JM, Driscoll ME, Gardner TS, Nealson KH, Osterman AL, Pinchuk G, Reed JL, Rodionov DA, Rodrigues JLM, Saffarini DA, Serres MH, Spormann AM, Zhulin IB, Tiedje JM: Towards environmental systems biology of Shewanella. Nat Rev Microbiol 2008, 6:592-603.
  • [2]Nealson KH, Saffarini D: Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu Rev Microbiol 1994, 48:311-343.
  • [3]Liu C, Gorby YA, Zachara JM, Fredrickson JK, Brown CF: Reduction kinetics of Fe (III), Co (III), U (VI), Cr (VI), and Tc (VII) in cultures of dissimilatory metal-reducing bacteria. Biotechnol Bioeng 2002, 80:637-649.
  • [4]Hau HH, Gilbert A, Coursolle D, Gralnick JA: Mechanism and Consequences of anaerobic respiration of cobalt by Shewanella oneidensis strain MR-1. Appl Environ Microbiol 2008, 74:6880-6886.
  • [5]Carpentier W, Sandra K, De Smet I, Brigé A, De Smet L, Van Beeumen J: Microbial reduction and precipitation of vanadium by Shewanella oneidensis. Appl Environ Microbiol 2003, 69:3636-3639.
  • [6]Hau HH, Gralnick JA: Ecology and biotechnology of the genus Shewanella. Annu Rev Microbiol 2007, 61:237-258.
  • [7]Kim BH, Kim HJ, Hyun MS, Park DH: Direct electrode reaction of Fe (III)-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol 1999, 9:127-131.
  • [8]Newton GJ, Mori S, Nakamura R, Hashimoto K, Watanabe K: Analyses of current-generating mechanisms of Shewanella loihica PV-4 and Shewanella oneidensis MR-1 in microbial fuel cells. Appl Environ Microbiol 2009, 75:7674-7681.
  • [9]Ross DE, Flynn JM, Baron DB, Gralnick JA, Bond DR: Towards electrosynthesis in Shewanella: energetics of reversing the Mtr pathway for reductive metabolism. PLoS One 2011, 6:e16649.
  • [10]Flynn JM, Ross DE, Hunt KA, Bond DR, Gralnick JA: Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria. MBio 2010, 1:1-8.
  • [11]Myers CR, Nealson KH: Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 1988, 240:1319-1321.
  • [12]Heidelberg JF, Paulsen IT, Nelson KE, Gaidos EJ, Nelson WC, Read TD, Eisen JA, Seshadri R, Ward N, Methe B, Clayton RA, Meyer T, Tsapin A, Scott J, Beanan M, Brinkac L, Daugherty S, DeBoy RT, Dodson RJ, Durkin a S, Haft DH, Kolonay JF, Madupu R, Peterson JD, Umayam LA, White O, Wolf AM, Vamathevan J, Weidman J, Impraim M, et al.: Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat Biotechnol 2002, 20:1118-1123.
  • [13]Daraselia N, Dernovoy D, Tian Y, Borodovsky M, Tatusov R, Tatusova T: Reannotation of Shewanella oneidensis genome. OMICS 2003, 7:171-175.
  • [14]Bretschger O, Obraztsova A, Sturm CA, Chang IS, Gorby YA, Reed SB, Culley DE, Reardon CL, Barua S, Romine MF, Zhou J, Beliaev AS, Bouhenni R, Saffarini D, Mansfeld F, Kim BH, Fredrickson JK, Nealson KH: Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl Environ Microbiol 2007, 73:7003-7012.
  • [15]Shi L, Squier TC, Zachara JM, Fredrickson JK: Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol Microbiol 2007, 65:12-20.
  • [16]Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK: Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci U S A 2006, 103:11358-11363.
  • [17]El-Naggar MY, Wanger G, Leung KM, Yuzvinsky TD, Southam G, Yang J, Lau WM, Nealson KH, Gorby YA: Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc Natl Acad Sci U S A 2010, 107:18127-18131.
  • [18]Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR: Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci U S A 2008, 105:3968-3973.
  • [19]von Canstein H, Ogawa J, Shimizu S, Lloyd JR: Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 2008, 74:615-623.
  • [20]Watanabe K, Manefield M, Lee M, Kouzuma A: Electron shuttles in biotechnology. Curr Opin Biotechnol 2009, 20:633-641.
  • [21]Okamoto A, Hashimoto K, Nealson KH, Nakamura R: Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones. Proc Natl Acad Sci U S A 2013, 110:7856-7861.
  • [22]Saffarini DA, Schultz R, Beliaev A: Involvement of cyclic AMP (cAMP) and cAMP receptor protein in anaerobic respiration of Shewanella oneidensis. J Bacteriol 2003, 185:3668-3671.
  • [23]Charania MA, Brockman KL, Zhang Y, Banerjee A, Pinchuk GE, Fredrickson JK, Beliaev AS, Saffarini DA: Involvement of a membrane-bound class III adenylate cyclase in regulation of anaerobic respiration in Shewanella oneidensis MR-1. J Bacteriol 2009, 191:4298-4306.
  • [24]Covington ED, Gelbmann CB, Kotloski NJ, Gralnick JA: An essential role for UshA in processing of extracellular flavin electron shuttles by Shewanella oneidensis. Mol Microbiol 2010, 78:519-532.
  • [25]Kouzuma A, Meng XY, Kimura N, Hashimoto K, Watanabe K: Disruption of the putative cell surface polysaccharide biosynthesis gene SO3177 in Shewanella oneidensis MR-1 enhances adhesion to electrodes and current generation in microbial fuel cells. Appl Environ Microbiol 2010, 76:4151-4157.
  • [26]Tajima N, Kouzuma A, Hashimoto K, Watanabe K: Selection of Shewanella oneidensis MR-1 gene-knockout mutants that adapt to an electrode-respiring condition. Biosci Biotechnol Biochem 2011, 75:2229-2233.
  • [27]Pernestig AK, Melefors O, Georgellis D: Identification of UvrY as the cognate response regulator for the BarA sensor kinase in Escherichia coli. J Biol Chem 2001, 276:225-231.
  • [28]Wei B, Shin S, LaPorte D, Wolfe AJ, Romeo T: Global regulatory mutations in csrA and rpoS cause severe central carbon stress in Escherichia coli in the presence of acetate. J Bacteriol 2000, 182:1632-1640.
  • [29]Pernestig AK, Georgellis D, Romeo T, Suzuki K, Tomenius H, Normark S, Melefors O: The Escherichia coli BarA-UvrY two-component system is needed for efficient switching between glycolytic and gluconeogenic carbon sources. J Bacteriol 2003, 185:843-853.
  • [30]Binnenkade L, Lassak J, Thormann KM: Analysis of the BarA/UvrY Two-Component System in Shewanella oneidensis MR-1. PLoS One 2011, 6:e23440.
  • [31]Müller J, Shukla S, Jost KA, Spormann AM: The mxd operon in Shewanella oneidensis MR-1 is induced in response to starvation and regulated by ArcS/ArcA and BarA/UvrY. BMC Microbiol 2013, 13:119.
  • [32]Boyd A, Chakrabarty AM: Pseudomonas aeruginosa biofilms: role of the alginate exopolysaccharide. J Ind Microbiol 1995, 15:162-168.
  • [33]Davey ME, Duncan MJ: Enhanced biofilm formation and loss of capsule synthesis: deletion of a putative glycosyltransferase in Porphyromonas gingivalis. J Bacteriol 2006, 188:5510-5523.
  • [34]Korenevsky A, Beveridge TJ: The surface physicochemistry and adhesiveness of Shewanella are affected by their surface polysaccharides. Microbiology 2007, 153:1872-1883.
  • [35]Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA: The COG database: an updated version includes eukaryotes. BMC Bioinformatics 2003, 4:41.
  • [36]Fritsch PS, Urbanowski ML, Stauffer GV: Role of the RNA polymerase α subunits in MetR-dependent activation of metE and metH: important residues in the C-terminal domain and orientation requirements within RNA polymerase. J Bacteriol 2000, 182:5539-5550.
  • [37]Weissbach H, Brot N: Regulation of methionine synthesis in Escherichia coli. Mol Microbiol 1991, 5:1593-1597.
  • [38]Niu C, Robbins CM, Pittman KJ, Osborn JL, Stubblefield BA, Simmons RB, Gilbert ES: LuxS influences Escherichia coli biofilm formation through autoinducer-2-dependent and autoinducer-2-independent modalities. FEMS Microbiol Ecol 2013, 83:778-791.
  • [39]Learman DR, Yi H, Brown SD, Martin SL, Geesey GG, Stevens AM, Hochella MF: Involvement of Shewanella oneidensis MR-1 LuxS in biofilm development and sulfur metabolism. Appl Environ Microbiol 2009, 75:1301-1307.
  • [40]Gödeke J, Paul K, Lassak J, Thormann KM: Phage-induced lysis enhances biofilm formation in Shewanella oneidensis MR-1. ISME J 2011, 5:613-626.
  • [41]Winzer K, Hardie KR, Burgess N, Doherty N, Kirke D, Holden MTG, Linforth R, Cornell KA, Taylor AJ, Hill PJ, Williams P: LuxS: its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone. Microbiology 2002, 148:909-922.
  • [42]Pei D, Zhu J: Mechanism of action of S-ribosylhomocysteinase (LuxS). Curr Opin Chem Biol 2004, 8:492-497.
  • [43]Vendeville A, Winzer K, Heurlier K, Tang CM, Hardie KR: Making “sense” of metabolism: autoinducer-2, LuxS and pathogenic bacteria. Nat Rev Microbiol 2005, 3:383-396.
  • [44]Xavier KB, Bassler BL: LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol 2003, 6:191-197.
  • [45]Chiang PK, Gordon RK, Tal J, Zeng GC, Doctor BP, Pardhasaradhi K, McCann PP: S-Adenosylmethionine and methylation. FASEB J 1996, 10:471-480.
  • [46]Yeung ATY, Torfs ECW, Jamshidi F, Bains M, Wiegand I, Hancock REW, Overhage J: Swarming of Pseudomonas aeruginosa is controlled by a broad spectrum of transcriptional regulators, including MetR. J Bacteriol 2009, 191:5592-5602.
  • [47]Urbanowski ML, Stauffer GV: Role of homocysteine in metR-mediated activation of the metE and metH genes in Salmonella typhimurium and Escherichia coli. J Bacteriol 1989, 171:3277-3281.
  • [48]Chatterjee J, Miyamoto CM, Zouzoulas A, Lang BF, Skouris N, Meighen EA: MetR and CRP bind to the Vibrio harveyi lux promoters and regulate luminescence. Mol Microbiol 2002, 46:101-111.
  • [49]Plamann MD, Stauffer GV: Regulation of the Escherichia coli glyA gene by the metR gene product and homocysteine. J Bacteriol 1989, 171:4958-4962.
  • [50]Alexeyev MF, Shokolenko IN: Mini-Tn10 transposon derivatives for insertion mutagenesis and gene delivery into the chromosome of gram-negative bacteria. Gene 1995, 160:59-62.
  • [51]Cheng S, Liu H, Logan BE: Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ Sci Technol 2006, 40:2426-2432.
  • [52]Saltikov CW, Newman DK: Genetic identification of a respiratory arsenate reductase. Proc Natl Acad Sci U S A 2003, 100:10983-10988.
  • [53]Watanabe K: Recent developments in microbial fuel cell technologies for sustainable bioenergy. J Biosci Bioeng 2008, 106:528-536.
  • [54]Rosenberg M, Gutnick D, Rosenberg E: Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 1980, 9:29-33.
  • [55]Kouzuma A, Hashimoto K, Watanabe K: Influences of aerobic respiration on current generation by Shewanella oneidensis MR-1 in single-chamber microbial fuel cells. Biosci Biotechnol Biochem 2012, 76:270-275.
  • [56]Kouzuma A, Hashimoto K, Watanabe K: Roles of siderophore in manganese-oxide reduction by Shewanella oneidensis MR-1. FEMS Microbiol Lett 2012, 326:91-98.
  文献评价指标  
  下载次数:42次 浏览次数:13次