期刊论文详细信息
BMC Microbiology
Diversity and phylogenetic analysis of endosymbiotic bacteria of the date palm root borer Oryctes agamemnon (Coleoptera: Scarabaeidae)
Reda A Ibrahim2  Wael S El-Sayed1 
[1] Microbiology Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt;Department of Economic Entomology, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
关键词: DGGE;    16S rRNA gene;    Endosymbionts;    Oryctes agamemnon;   
Others  :  1212063
DOI  :  10.1186/s12866-015-0422-8
 received in 2014-11-14, accepted in 2015-04-08,  发布年份 2015
PDF
【 摘 要 】

Background

The date palm root borer Oryctes agamemnon (Coleoptera: Scarabaeidae) is one of the major pests of palms. In Saudi Arabia, both larvae and adults of Oryctes are particularly troublesome, especially during the establishment of young date palm orchards. Endosymbiotic bacteria are known to have a key role in food digestion and insecticide resistance mechanisms, and therefore are essential to their host insect. Identification of these bacteria in their insect host can lead to development of new insect pest control strategies.

Results

Metagenomic DNA from larval midgut of the date palm root borer, O. agamemnon, was analyzed for endosymbiotic bacterial communities using denatured gradient gel electrophoresis (DGGE) utilizing 16S rRNA genes. The DGGE fingerprints with metagenomic DNA showed predominance of eleven major operational taxonomic units (OTUs) identified as members of Photobacterium, Vibrio, Allomonas, Shewanella, Cellulomonas, and Citrobacter, as well as uncultured bacteria, including some uncultured Vibrio members. DGGE profiles also showed shifts in the dominant bacterial populations of the original soil compared with those that existed in the larval midguts. The endosymbiotic bacterial community was dominated by members of the family Vibrionaceae (54.5%), followed by uncultured bacteria (18.2%), Enterobacteriaceae (9.1%), Shewanellaceae (9.1%), and Cellulomonadaceae (9.1%). Phylogenetic studies confirmed the affiliation of the dominant OTUs into specified families revealed by clustering of each phylotype to its corresponding clade. Relative frequency of each phylotype in larval midguts revealed predominance of Vibrio furnisii and Vibrio navarrensis, followed by uncultured bacterial spp., then Cellulomonas hominis, Shewanella algae, and Citrobacter freundii.

Conclusion

Analysis of metagenomic DNA for endosymbiotic bacterial communities from the midgut of Oryctes larvae showed strong selection of specific bacterial populations that may have a key role in digestion, as well as other benefits to the larvae of O. agamemnon. Determination of the distinct endosymbiotic community structure and its possible biological functions within the insect could provide us with basic information for future pest control research.

【 授权许可】

   
2015 El-Sayed and Ibrahim; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150613021048287.pdf 723KB PDF download
Figure 3. 89KB Image download
Figure 2. 35KB Image download
Figure 1. 34KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Khalaf MZ, Al Rubeae HF, Al-Taweel A, Naher F. First record of Arabian rhinoceros bettle, Oryctes agamemnon arabicus Fairmaire on date palm trees in Iraq. Agric Biol J N Am. 2013; 4(3):349-51.
  • [2]Soltani R, Ikbel C, Hamouda H. Descriptive study of damage caused by the rhinoceros beetle, Oryctes agamemnon, and its influence on date palm oases of Rjim Maatoug, Tunisia. J Insect Sci. 2008; 57:1-11.
  • [3]Gassouma MS. Pests of the date palm (Phoenix dactylifera). 2004.
  • [4]Bedford GO. Biology, ecology and control of palm rhinoceros beetles. Ann Rev Entomol. 1980; 25:309-39.
  • [5]Samsudin A, Chew P, Mohd M. Oryctes rhinoceros: breeding and damage on oil palms in an oil palm to oil palm replanting situation. Planter. 1993; 69(813):583-91.
  • [6]Ehsine M, Belkadhi M, Chaieb M. Seasonal and nocturnal activities of the rhinoceros borer (Coleoptera: Scarabaeidae) in the north Saharan oases ecosystems. J Insect Sci. 2014; 14:256-61.
  • [7]Soltani R. The rhinoceros beetle Oryctes agamemnon arabicus in Tunisia: current challenge and future management perspectives. Tunisia J Plant Prot. 2010; 5(2):179-93.
  • [8]Lundgren J, Michael R, Chee-Sanford J. Bacterial communities within digestive tracts of ground beetles (Coleoptera: Carabidae). Ann Entomol Soc Am. 2007; 100(2):275-82.
  • [9]Ferrari J, Vavre F. Bacterial symbionts in insects or the story of communities affecting communities. Phil Trans R Soc B. 2011; 366:1389-400.
  • [10]Hongoh Y. Diversity and genomes of uncultured microbial symbionts in the termite gut. Biosci Biotechnol Biochem. 2010; 74:1145-51.
  • [11]Engel P, Moran NA. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol Rev. 2013; 37:699-735.
  • [12]Colman DR, Toolson EC, Takacs-Vesbach CD. Do diet and taxonomy influence insect gut bacterial communities? Mol Ecol. 2012; 21:5124-37.
  • [13]Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L, Engelstädter J et al.. The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol. 2008; 6:27. BioMed Central Full Text
  • [14]Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH. How many species are infected with Wolbachia? A statistical analysis of current data. FEMS Microbiol Lett. 2008; 281(2):215-20.
  • [15]Zindel R, Gottlieb Y, Aebi A. Arthropod symbioses: a neglected parameter in pest- and disease-control programs. J Appl Ecol. 2011; 48(4):864-72.
  • [16]Oliver KM, Degnan PH, Burke GR, Moran NA. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Ann Rev Entomol. 2010; 55:247e266.
  • [17]Hirsch J, Strohmeier S, Pfannkuchen P, Reineke A. Assessment of bacterial endosymbiont diversity in Otiorhynchus spp. (Coleoptera: Curculionidae) larvae using a multitag 454 pyrosequencing approach. BMC Microbiol. 2012; 12(1):S6. BioMed Central Full Text
  • [18]Moya A, Pereto J, Gil R, Latorre A. Learning how to live together: genomic insights into prokaryote-animal symbioses. Nature Rev Genet. 2008; 9(3):218-29.
  • [19]Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 2008; 42:165-90.
  • [20]Douglas AE. Symbiotic microorganisms: untapped resources for insect pest control. Trends Biotechnol. 2007; 25(8):338-42.
  • [21]Beard CB, Mason PW, Aksoy S, Tesh RB, Richards FF. Transformation of an insect symbiont and expression of a foreign gene in the Chagas disease vector Rhodnius prolixus. Amer J Trop Med Hyg. 1992; 46:195-200.
  • [22]Avidano L, Gamalero E, Cossa GP, Carraro E. Characterization of soil health in an Italian polluted site by using microorganisms as bio-indicators. Appl Soil Ecol. 2005; 30:21-33.
  • [23]Amann R, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995; 59:143-69.
  • [24]Head IM, Saunders JR, Pickup RW. Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb Ecol. 1998; 35(1):1-21.
  • [25]Hugenholtz P, Goebel B, Pace N. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol. 1998; 180:4765-74.
  • [26]Muyzer G. DGGE/TGGE, a method for identifying genes from natural communities. Curr Opin Microbiol. 1999; 2:317-22.
  • [27]Muyzer G, Brinkhoff T, Nübel U, Santegoeds C, Schäfer H, Wawer C. Denaturing Gradient Gel Electrophoresis (DGGE) in Microbial Ecology, p. 1–27. Molecular Microbial Ecology Manual. Akkermans ADL, Elsas JD, Bruijn FJ, editors. Kluwer Academic Publishers, Dordrecht, The Netherlands; 1997.
  • [28]Marsh TL. Terminal restriction fragment length polymorphism (TRFLP): an emerging method for characterizing diversity among homologous populations of amplification products. Curr Opin Microbiol. 1999; 2:323-7.
  • [29]Gelsomino A, Keijzer WA, Cacco G, Van Elsas JD. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. J Microbiol Meth. 1999; 38:1-15.
  • [30]Riemann L, Steward GF, Fandino LB, Campbell L, Landry MR, Azam F. Bacterial community composition during two consecutive NE Monsoon periods in the Arabian Sea studied by denaturing gradient gel electrophoresis (DGGE) of rRNA genes. Deep-Sea Res. 1999; 46:1791-811.
  • [31]Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S et al.. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol. 2001; 64:1220-5.
  • [32]Ritz K, Mac Nicol JW, Nunan N, Grayston S, Millard P, Atkinson A et al.. Spatial structure in soil chemical and microbiological properties in upland grassland. FEMS Microbiol Ecol. 2004; 49:191-205.
  • [33]Sun HY, Deng SP, Raun WR. Bacterial community structure and diversity in a century-old manure-treated agro-ecosystem. Appl Environ Microbiol. 2004; 70:5868-74.
  • [34]Whiteley AS, Bailey MJ. Bacterial community structure and physiological state within an industrial phenol bioremediation system. Appl Environ Microbiol. 2000; 66:2400-7.
  • [35]Andert J, Marten A, Brandl R, Brune A. Inter- and intraspecific comparison of the bacterial assemblages in the hindgut of humivorous scarab beetle larvae (Pachnoda spp.). FEMS Microbiol Ecol. 2010; 74:439-49.
  • [36]Lauzon CR, Sjogren RE, Prokopy RJ. Enzymatic capabilities of bacteria associated with apple maggot flies: a postulated role in attraction. J Chem Ecol. 2000; 26:95-967.
  • [37]Adams L, Boopathy R. Isolation and characterization of enteric bacteria from the hindgut of Formosan termite. Biores Technol. 2005; 96(14):1592-8.
  • [38]Tagliavia M, Messina E, Manachini B, Cappello S, Quatrini P. The gut microbiota of larvae of Rhynchophorus ferrugineus Oliver (Coleoptera: Curculionidae). BMC Microbiol. 2014; 14:136. BioMed Central Full Text
  • [39]Fujiwara A, Maekawa K, Tsuchida T. Genetic groups and endosymbiotic microbiota of the Bemisia tabaci species complex in Japanese agricultural sites. J Appl Entomol Online. 2014, doi: 10.1111/jen.12171.
  • [40]Desai A, Bhamre P. Diversity of gut bacterial fauna of Oryctes monocerus linnaeus (coleoptera: scarabaeidae). Bionano Front. 2012; 5:1-4.
  • [41]Huang S, Sheng P, Zhang H. Isolation and identification of cellulolytic bacteria from the gut of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). Int J Mol Sci. 2012; 13:2563-77.
  • [42]Sanchez-Contreras M, Vlisidou I. The diversity of insect-bacteria interactions and its applications for disease control. Biotech Gene Eng Rev. 2008; 25:203-44.
  • [43]Chandler J, Lang J, Bhatnagar S, Eisen J, Kopp A. Bacterial communities of diverse Drosophila species: ecological context of a host–microbe model system. PLoS Genet. 2011; 7(9):1-18.
  • [44]Ovreas L. Population and community level approaches for analyzing microbial diversity in natural environments. Ecol Lett. 2000; 3:236-51.
  • [45]Campbell B, Bragg T, Turner C. Phylogeny of symbiotic bacteria of four weevil species (Coleoptera:Curculionidae) based on analysis of 16s ribosomal DNA. Insect Biochem Molec Biol. 1992; 22(5):415-21.
  • [46]Lemke T, Stingl U, Egert M, Friedrich MW, Brune A. Physicochemical conditions and microbial activities in the highly alkaline gut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl Environ Microbiol. 2003; 69:6650-8.
  • [47]Muyzer G, De Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1993; 59:695-700.
  • [48]Duarte S, Pascoal C, Garabétian F, Cássio F, Charcosset JY. Microbial decomposer communities are mainly structured by the trophic status in circumneutral and alkaline streams. Appl Enviro Microbiol. 2009; 75:6211-21.
  • [49]Ping L, Yanxin W, Yanhong W, Kun L, Lei T. Bacterial community structure and diversity during establishment of an anaerobic bioreactor to treat swine wastewater. Water Sci Technol. 2010; 62:243-52.
  • [50]Moreirinha C, Duarte S, Pascoal C, Cássio F. Effects of cadmium and phenanthrene mixtures on aquatic fungi and microbially mediated leaf litter decomposition. Arch Environ Cont Toxicol. 2011; 61:211-9.
  • [51]Sanger F, Nicklen S, Coulson A. DNA sequencing with chain-terminating inhibitors. Biochemistry. 1977; 74(12):5463-7.
  • [52]Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W et al.. Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res. 1997; 25:3389-402.
  • [53]Thompson D, Gibson J, Plewinak F, Jeanmougin F, Higgins G. The Clastal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nuc Acid Res. 1997; 25:4867-87.
  • [54]Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987; 4:406-25.
  • [55]Kumar S, Tamura K, Nei M. MEGA3: an integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 2004; 5:150-63.
  文献评价指标  
  下载次数:0次 浏览次数:2次