期刊论文详细信息
BMC Systems Biology
Estimation of dynamic flux profiles from metabolic time series data
Eberhard O Voit1  I-Chun Chou1 
[1] Integrative BioSystems Institute and The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA
关键词: Time series data;    Structure identification;    Parameter estimation;    Metabolic pathways;    Dynamic flux estimation;    Biochemical systems theory;   
Others  :  1143852
DOI  :  10.1186/1752-0509-6-84
 received in 2012-01-10, accepted in 2012-05-05,  发布年份 2012
PDF
【 摘 要 】

Background

Advances in modern high-throughput techniques of molecular biology have enabled top-down approaches for the estimation of parameter values in metabolic systems, based on time series data. Special among them is the recent method of dynamic flux estimation (DFE), which uses such data not only for parameter estimation but also for the identification of functional forms of the processes governing a metabolic system. DFE furthermore provides diagnostic tools for the evaluation of model validity and of the quality of a model fit beyond residual errors. Unfortunately, DFE works only when the data are more or less complete and the system contains as many independent fluxes as metabolites. These drawbacks may be ameliorated with other types of estimation and information. However, such supplementations incur their own limitations. In particular, assumptions must be made regarding the functional forms of some processes and detailed kinetic information must be available, in addition to the time series data.

Results

The authors propose here a systematic approach that supplements DFE and overcomes some of its shortcomings. Like DFE, the approach is model-free and requires only minimal assumptions. If sufficient time series data are available, the approach allows the determination of a subset of fluxes that enables the subsequent applicability of DFE to the rest of the flux system. The authors demonstrate the procedure with three artificial pathway systems exhibiting distinct characteristics and with actual data of the trehalose pathway in Saccharomyces cerevisiae.

Conclusions

The results demonstrate that the proposed method successfully complements DFE under various situations and without a priori assumptions regarding the model representation. The proposed method also permits an examination of whether at all, to what degree, or within what range the available time series data can be validly represented in a particular functional format of a flux within a pathway system. Based on these results, further experiments may be designed to generate data points that genuinely add new information to the structure identification and parameter estimation tasks at hand.

【 授权许可】

   
2012 Chou and Voit; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150330022629147.pdf 2742KB PDF download
Figure 12. 53KB Image download
Figure 11. 36KB Image download
Figure 10. 43KB Image download
Figure 9. 88KB Image download
Figure 8. 43KB Image download
Figure 7. 37KB Image download
Figure 6. 98KB Image download
Figure 5. 118KB Image download
Figure 4. 46KB Image download
20150407102715739.pdf 498KB PDF download
Figure 2. 101KB Image download
Figure 1. 53KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

【 参考文献 】
  • [1]Voit EO: The dawn of a new era of metabolic systems analysis. Drug Discov Today BioSilico 2004, 2(5):182-189.
  • [2]Chou I-C, Voit EO: Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Math Biosci 2009, 219(2):57-83.
  • [3]Gennemark P, Wedelin D: Benchmarks for identification of ordinary differential equations from time series data. Bioinformatics 2009, 25(6):780-786.
  • [4]Hanekom AJ: Generic kinetic equations for modelling multisubstrate reactions in computational systems biology. University of Stellenbosch, In Master of Science Thesis. Department of Biochemistry; 2006.
  • [5]Schulz AR: Enzyme Kinetics. From Diastase to Multi-enzyme Systems. Cambridge University Press, Cambridge, U.K; 1994.
  • [6]Gutenkunst RN, Casey FP, Waterfall JJ, Myers CR, Sethna JP: Extracting falsifiable predictions from sloppy models. Ann N Y Acad Sci 2007, 1115:203-211.
  • [7]Srinath S, Gunawan R: Parameter identifiability of power-law biochemical system models. J Biotechnol 2010, 149(3):132-140.
  • [8]Vilela M, Vinga S, Maia MA, Voit EO, Almeida JS: Identification of neutral biochemical network models from time series data. BMC Syst Biol 2009, 3:47. BioMed Central Full Text
  • [9]Sorribas A, March J, Voit EO: Estimating age-related trends in cross-sectional studies using S-distributions. Stats Med 2000, 10(5):697-713.
  • [10]Goel G, Chou IC, Voit EO: System estimation from metabolic time-series data. Bioinformatics 2008, 24(21):2505-2511.
  • [11]Voit EO: What if the fit is unfit, In Applied statistics for biological networks. Edited by Dehmer M, Emmert-Streib F, Salvador A. Wiley, New York; 2011.
  • [12]Bonarius HPJ, Schmid G, Tramper J: Flux analysis of underdetermined metabolic networks: The quest for the missing constraints. Trends Biotechnol 1997, 15(8):308-314.
  • [13]Palsson BØ: Systems Biology: Properties of Reconstructed Networks. Cambridge University Press, New York; 2006.
  • [14]Okamoto M: System analysis of acetone-butanol-ethanol fermentation based on time-sliced metabolic flux analysis, In: Symposium on Cellular Systems Biology. National Chung Cheng University, Taiwan; 2008.
  • [15]Sekiyama Y, Kikuchi J: Towards dynamic metabolic network measurements by multi-dimensional NMR-based fluxomics. Phytochemistry 2007, 68(16–18):2320-2329.
  • [16]Teixeira AP, Santos SS, Carinhas N, Oliveira R, Alves PM: Combining metabolic flux analysis tools and 13Â C NMR to estimate intracellular fluxes of cultured astrocytes. Neurochem Int 2008, 52(3):478-486.
  • [17]Yang C, Hua Q, Shimizu K: Quantitative analysis of intracellular metabolic fluxes using GC-MS and two-dimensional NMR spectroscopy. J Biosci Bioeng 2002, 93(1):78-87.
  • [18]Mahadevan R, Edwards JS, Doyle FJ 3rd: Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 2002, 83(3):1331-1340.
  • [19]Voit EO, Goel G, Chou IC, Fonseca LL: Estimation of metabolic pathway systems from different data sources. IET Syst Biol 2009, 3(6):513-522.
  • [20]http://www.brenda-enzymes.org/
  • [21]Voit EO: Computational Analysis of Biochemical Systems. A Practical Guide for Biochemists and Molecular Biologists. Cambridge University Press, Cambridge, UK; 2000.
  • [22]Hatzimanikatis V, Bailey JE: MCA has more to say. J Theor Biol 1996, 182(3):233-242.
  • [23]Visser D, Heijnen JJ: The mathematics of metabolic control analysis revisited. Metab Eng 2002, 4(2):114-123.
  • [24]Chou I-C, Martens H, Voit EO: Parameter estimation in biochemical systems models with alternating regression. Theor Biol Med Model 2006, 3:25. BioMed Central Full Text
  • [25]Vilela M, Chou I-C, Vinga S, Vasconcelos AT, Voit EO, Almeida JS: Parameter optimization in S-system models. BMC Syst Biol 2008, 2:35. BioMed Central Full Text
  • [26]Vilela M, Borges CCH, Vinga S, Vasconcelos ATR, Santos H, Voit EO, Almeida JS: Automated smoother for the numerical decoupling of dynamics models. BMC Bioinformatics 2007, 8:305. BioMed Central Full Text
  • [27]Eilers PHC: A perfect smoother. Anal Chem 2003, 75(14):3631-3636.
  • [28]Voit EO, Almeida J: Decoupling dynamical systems for pathway identification from metabolic profiles. Bioinformatics 2004, 20(11):1670-1681.
  • [29]Voit EO, Savageau MA: Power-law approach to modeling biological systems; III. Methods of analysis. J Ferment Technol 1982, 60(3):223-241.
  • [30]Sorribas A, Hernandez-Bermejo B, Vilaprinyo E, Alves R: Cooperativity and saturation in biochemical networks: a saturable formalism using Taylor series approximations. Biotechnol Bioeng 2007, 97(5):1259-1277.
  • [31]Hlavacek WS, Savageau MA: Rules for coupled expression of regulator and effector genes in inducible circuits. J Mol Biol 1996, 255(1):121-139.
  • [32]Kikuchi S, Tominaga D, Arita M, Takahashi K, Tomita M: Dynamic modeling of genetic networks using genetic algorithm and S-system. Bioinformatics 2003, 19(5):643-650.
  • [33]Veflingstad SR, Almeida J, Voit EO: Priming nonlinear searches for pathway identification. Theor Biol Med Model 2004, 1:8. BioMed Central Full Text
  • [34]Fonseca LL, Sanchez C, Santos H, Voit EO: Complex coordination of multi-scale cellular responses to environmental stress. Mol Biosyst 2011, 7(3):731-741.
  • [35]Wiechert W: 13Â C metabolic flux analysis. Metab Eng 2001, 3(3):195-206.
  文献评价指标  
  下载次数:128次 浏览次数:32次