| BMC Systems Biology | |
| Identification of regulatory structure and kinetic parameters of biochemical networks via mixed-integer dynamic optimization | |
| Laureano Jiménez2  Albert Sorribas2  Rui Alves2  Antoni Miró1  Gonzalo Guillén-Gosálbez1  | |
| [1] Departament d’Enginyeria Química, Universitat Rovira i Virgili, Av.Països Catalans 26, 43007 Tarragona, Spain;Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Universitat de Lleida, Avinguda Alcalde Rovira Roure 80, 25198 Lleida, Spain | |
| 关键词: Biochemical networks; Dynamic optimization; Orthogonal collocation; Akaike criterion; Structure identification; Parameter estimation; | |
| Others : 1141966 DOI : 10.1186/1752-0509-7-113 |
|
| received in 2013-03-26, accepted in 2013-10-14, 发布年份 2013 | |
【 摘 要 】
Background
Recovering the network topology and associated kinetic parameter values from time-series data are central topics in systems biology. Nevertheless, methods that simultaneously do both are few and lack generality.
Results
Here, we present a rigorous approach for simultaneously estimating the parameters and regulatory topology of biochemical networks from time-series data. The parameter estimation task is formulated as a mixed-integer dynamic optimization problem with: (i) binary variables, used to model the existence of regulatory interactions and kinetic effects of metabolites in the network processes; and (ii) continuous variables, denoting metabolites concentrations and kinetic parameters values. The approach simultaneously optimizes the Akaike criterion, which captures the trade-off between complexity (measured by the number of parameters), and accuracy of the fitting. This simultaneous optimization mitigates a possible overfitting that could result from addition of spurious regulatory interactions.
Conclusion
The capabilities of our approach were tested in one benchmark problem. Our algorithm is able to identify a set of plausible network topologies with their associated parameters.
【 授权许可】
2013 Guillén-Gosálbez et al.; licensee BioMed Central Ltd.
| Files | Size | Format | View |
|---|---|---|---|
| Figure 2. | 119KB | Image | |
| Figure 6. | 81KB | Image | |
| Figure 5. | 56KB | Image | |
| Figure 4. | 86KB | Image | |
| Figure 3. | 90KB | Image | |
| Figure 2. | 48KB | Image | |
| Figure 1. | 24KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 2.
【 参考文献 】
- [1]Chou IC, Voit EO: Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Math Biosci 2009, 219:57-83.
- [2]Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, Timmer J: Structural and practical identifiability analysis of partially observed dynamical mod-elsby exploiting the profile likelihood. Bioinformatics 2009, 25:1923-1929.
- [3]Srinath S, Gunawan R: Parameter identifiability of power-law biochemical system models. J Biotechnol 2010, 149:132-140.
- [4]Voit EO: Characterizability of metabolic pathway systems from time series data. Math Biosci 2013. doi:10.1016/j.mbs.2013.01.008
- [5]Maki Y, Tominaga D, Okamoto M, Watanabe S, Eguchi Y: Development of a system for the inference of large scale genetic networks. Pac Symp Biocomput 2001, 2001:446-458.
- [6]Vance W, Arkin A, Ross J: Determination of causal connectivities of species in reaction networks. Proc Natl Acad Sci U S A 2002, 99(9):5816-5821.
- [7]Sriyudthsak K, Shiraishi F, Hirai MY: Identification of a Metabolic Reaction Network from Time-Series Data of Metabolite Concentrations. PLoS One 2013, 8(1):e51212.
- [8]Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, Palsson BØ: A comprehensive genome-scale reconstruction of Escherichia coli metabolism. Mol Syst Biol 2011, 7:535. doi:10.1038/msb.2011.65
- [9]Sorribas A, Hernandez-Bermejo B, Vilaprinyo E, Alves R: Cooperativity and saturation in biochemical networks: a saturable formalism using Taylor series approximations. Biotechnol Bioeng 2007, 97:1259-1277.
- [10]Alves R, Vilaprinyo E, Hernandez-Bermejo B, Sorribas A: Mathematical formalisms based on approximated kinetic representations for modeling genetic and metabolic pathways. Biotechnol Genet Eng Rev 2008, 25:1-40.
- [11]Moles CG, Mendes P, Banga JR: Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res 2003, 13(11):2467-2474.
- [12]Chis OT, Banga JR, Balsa-Canto E: Structural identifiability of systems biology models: a critical comparison of methods. PLoS One 2011, 6(11):e27755. doi:10.1371/journal.pone.0027755
- [13]Sorribas A, Samitier S, Canela EI, Cascante M: Metabolic pathway characterization from transient response data obtained in situ: parameter estimation in S-system models. J Theor Biol 1993, 162:81-102.
- [14]Sorribas A, Cascante M: Structure identifiability in metabolic pathways: parameter estimation in models based on the power-law formalism. Biochem J 1994, 298:303-311.
- [15]Vilela M, Chou IC, Vinga S, Vasconcelos AT, Voit EO, Almeida JS: Parameter optimization in S-system models. BMC Syst Biol 2008, 2:35. BioMed Central Full Text
- [16]Markon KE, Krueger RF: An Empirical Comparison of Information-Theoretic Selection Criteria for Multivariate Behavior Genetic Models. Behav Genet 2004, 34:593-610.
- [17]Akaike H: New look at statistical-model identification. IEEE Trans Automat 1974, 19:716-723. Contr. AC19 716
- [18]Schwarz G: Estimating the dimension of a model. Ann Stat 1978, 6:461-464.
- [19]Burnham KP, Anderson DR: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2nd edition. New York: Springer-Verlag; 2002. ISBN 0-387-95364-7
- [20]Voit E: Computational analysis of biochemical systems. A practical guide forbiochemists and molecular biologists. Cambridge: Cambridge University Press; 2000.
- [21]Savageau M, Biochemical systems analysis. i: Some mathematical properties of the rate law for the component enzymatic reactions. J Theor Biol 1969, 25:365-369.
- [22]Savageau M: Biochemical systems analysis. ii. The steady-state solutions for an n-pool system using a power-law approximation. J Theor Biol 1969, 25:370-379.
- [23]Voit EO, Almeida J: Decoupling dynamical systems for pathway identification from metabolic profiles. Bioinformatics 2004, 20:1670-1681.
- [24]Wang Y, Joshi T, Zhang XS, Xu D, Chen L: Inferring gene regulatory networks from multiple microarray datasets. Bioinformatics 2006, 22(19):2413-2420.
- [25]Biegler L, Grossmann IE: Retrospective on optimization. Comput Chem Eng 2004, 28(8):1169-1192.
- [26]Miró A, Pozo C, Guillén-Gosélbez G, Egea JA, Jiménez L: Deterministic global optimization algorithm based on outer approximation for the parameter estimation of nonlinear dynamic biological systems. BMC Bioinformatics 2012, 13(1):90. BioMed Central Full Text
- [27]Grossmann IE, Biegler L: Part II. Future perspective on optimization. Comput Chem Eng 2004, 28(8):1193-1218.
- [28]Pozo C, Marin-Sanguino A, Guillén-Gosalbez G, Jimenez L, Alves R, Sorribas A: Steady-state global optimization of non-linear dynamic models through recasting into power-law canonical models. BMC Syst Biol 2011, 5:137. BioMed Central Full Text
- [29]Vecchietti A, Sangbum L, Grossmann I: Modeling of dicrete/continuous optimization problems: Characterization and formulation of disjunctions and their re-laxations. Comput Chem Eng 2003, 27:433-448.
- [30]Esposito W, Floudas C: Global optimization for the parameter estimation of differential-algebraic systems. Ind Eng Chem Res 2000, 39(5):1291-1310.
- [31]Rodriguez-Fernandez M, Egea J, Banga J: Novelmetaheuristic for parameter estimation in nonlinear dynamic biological systems. BMC Bioinf 2006, 7:483. BioMed Central Full Text