期刊论文详细信息
BMC Systems Biology
Identification of regulatory structure and kinetic parameters of biochemical networks via mixed-integer dynamic optimization
Laureano Jiménez2  Albert Sorribas2  Rui Alves2  Antoni Miró1  Gonzalo Guillén-Gosálbez1 
[1] Departament d’Enginyeria Química, Universitat Rovira i Virgili, Av.Països Catalans 26, 43007 Tarragona, Spain;Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Universitat de Lleida, Avinguda Alcalde Rovira Roure 80, 25198 Lleida, Spain
关键词: Biochemical networks;    Dynamic optimization;    Orthogonal collocation;    Akaike criterion;    Structure identification;    Parameter estimation;   
Others  :  1141966
DOI  :  10.1186/1752-0509-7-113
 received in 2013-03-26, accepted in 2013-10-14,  发布年份 2013
【 摘 要 】

Background

Recovering the network topology and associated kinetic parameter values from time-series data are central topics in systems biology. Nevertheless, methods that simultaneously do both are few and lack generality.

Results

Here, we present a rigorous approach for simultaneously estimating the parameters and regulatory topology of biochemical networks from time-series data. The parameter estimation task is formulated as a mixed-integer dynamic optimization problem with: (i) binary variables, used to model the existence of regulatory interactions and kinetic effects of metabolites in the network processes; and (ii) continuous variables, denoting metabolites concentrations and kinetic parameters values. The approach simultaneously optimizes the Akaike criterion, which captures the trade-off between complexity (measured by the number of parameters), and accuracy of the fitting. This simultaneous optimization mitigates a possible overfitting that could result from addition of spurious regulatory interactions.

Conclusion

The capabilities of our approach were tested in one benchmark problem. Our algorithm is able to identify a set of plausible network topologies with their associated parameters.

【 授权许可】

   
2013 Guillén-Gosálbez et al.; licensee BioMed Central Ltd.

附件列表
Files Size Format View
Figure 2. 119KB Image download
Figure 6. 81KB Image download
Figure 5. 56KB Image download
Figure 4. 86KB Image download
Figure 3. 90KB Image download
Figure 2. 48KB Image download
Figure 1. 24KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 2.

【 参考文献 】
  • [1]Chou IC, Voit EO: Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Math Biosci 2009, 219:57-83.
  • [2]Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, Timmer J: Structural and practical identifiability analysis of partially observed dynamical mod-elsby exploiting the profile likelihood. Bioinformatics 2009, 25:1923-1929.
  • [3]Srinath S, Gunawan R: Parameter identifiability of power-law biochemical system models. J Biotechnol 2010, 149:132-140.
  • [4]Voit EO: Characterizability of metabolic pathway systems from time series data. Math Biosci 2013. doi:10.1016/j.mbs.2013.01.008
  • [5]Maki Y, Tominaga D, Okamoto M, Watanabe S, Eguchi Y: Development of a system for the inference of large scale genetic networks. Pac Symp Biocomput 2001, 2001:446-458.
  • [6]Vance W, Arkin A, Ross J: Determination of causal connectivities of species in reaction networks. Proc Natl Acad Sci U S A 2002, 99(9):5816-5821.
  • [7]Sriyudthsak K, Shiraishi F, Hirai MY: Identification of a Metabolic Reaction Network from Time-Series Data of Metabolite Concentrations. PLoS One 2013, 8(1):e51212.
  • [8]Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, Palsson BØ: A comprehensive genome-scale reconstruction of Escherichia coli metabolism. Mol Syst Biol 2011, 7:535. doi:10.1038/msb.2011.65
  • [9]Sorribas A, Hernandez-Bermejo B, Vilaprinyo E, Alves R: Cooperativity and saturation in biochemical networks: a saturable formalism using Taylor series approximations. Biotechnol Bioeng 2007, 97:1259-1277.
  • [10]Alves R, Vilaprinyo E, Hernandez-Bermejo B, Sorribas A: Mathematical formalisms based on approximated kinetic representations for modeling genetic and metabolic pathways. Biotechnol Genet Eng Rev 2008, 25:1-40.
  • [11]Moles CG, Mendes P, Banga JR: Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res 2003, 13(11):2467-2474.
  • [12]Chis OT, Banga JR, Balsa-Canto E: Structural identifiability of systems biology models: a critical comparison of methods. PLoS One 2011, 6(11):e27755. doi:10.1371/journal.pone.0027755
  • [13]Sorribas A, Samitier S, Canela EI, Cascante M: Metabolic pathway characterization from transient response data obtained in situ: parameter estimation in S-system models. J Theor Biol 1993, 162:81-102.
  • [14]Sorribas A, Cascante M: Structure identifiability in metabolic pathways: parameter estimation in models based on the power-law formalism. Biochem J 1994, 298:303-311.
  • [15]Vilela M, Chou IC, Vinga S, Vasconcelos AT, Voit EO, Almeida JS: Parameter optimization in S-system models. BMC Syst Biol 2008, 2:35. BioMed Central Full Text
  • [16]Markon KE, Krueger RF: An Empirical Comparison of Information-Theoretic Selection Criteria for Multivariate Behavior Genetic Models. Behav Genet 2004, 34:593-610.
  • [17]Akaike H: New look at statistical-model identification. IEEE Trans Automat 1974, 19:716-723. Contr. AC19 716
  • [18]Schwarz G: Estimating the dimension of a model. Ann Stat 1978, 6:461-464.
  • [19]Burnham KP, Anderson DR: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2nd edition. New York: Springer-Verlag; 2002. ISBN 0-387-95364-7
  • [20]Voit E: Computational analysis of biochemical systems. A practical guide forbiochemists and molecular biologists. Cambridge: Cambridge University Press; 2000.
  • [21]Savageau M, Biochemical systems analysis. i: Some mathematical properties of the rate law for the component enzymatic reactions. J Theor Biol 1969, 25:365-369.
  • [22]Savageau M: Biochemical systems analysis. ii. The steady-state solutions for an n-pool system using a power-law approximation. J Theor Biol 1969, 25:370-379.
  • [23]Voit EO, Almeida J: Decoupling dynamical systems for pathway identification from metabolic profiles. Bioinformatics 2004, 20:1670-1681.
  • [24]Wang Y, Joshi T, Zhang XS, Xu D, Chen L: Inferring gene regulatory networks from multiple microarray datasets. Bioinformatics 2006, 22(19):2413-2420.
  • [25]Biegler L, Grossmann IE: Retrospective on optimization. Comput Chem Eng 2004, 28(8):1169-1192.
  • [26]Miró A, Pozo C, Guillén-Gosélbez G, Egea JA, Jiménez L: Deterministic global optimization algorithm based on outer approximation for the parameter estimation of nonlinear dynamic biological systems. BMC Bioinformatics 2012, 13(1):90. BioMed Central Full Text
  • [27]Grossmann IE, Biegler L: Part II. Future perspective on optimization. Comput Chem Eng 2004, 28(8):1193-1218.
  • [28]Pozo C, Marin-Sanguino A, Guillén-Gosalbez G, Jimenez L, Alves R, Sorribas A: Steady-state global optimization of non-linear dynamic models through recasting into power-law canonical models. BMC Syst Biol 2011, 5:137. BioMed Central Full Text
  • [29]Vecchietti A, Sangbum L, Grossmann I: Modeling of dicrete/continuous optimization problems: Characterization and formulation of disjunctions and their re-laxations. Comput Chem Eng 2003, 27:433-448.
  • [30]Esposito W, Floudas C: Global optimization for the parameter estimation of differential-algebraic systems. Ind Eng Chem Res 2000, 39(5):1291-1310.
  • [31]Rodriguez-Fernandez M, Egea J, Banga J: Novelmetaheuristic for parameter estimation in nonlinear dynamic biological systems. BMC Bioinf 2006, 7:483. BioMed Central Full Text
  文献评价指标  
  下载次数:135次 浏览次数:24次