期刊论文详细信息
BMC Developmental Biology
Distinct contextual roles for Notch signalling in skeletal muscle stem cells
Shahragim Tajbakhsh1  Philippos Mourikis1 
[1] Stem Cells and Development, CNRS URA 2578, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France
关键词: Regeneration;    Quiescence;    Skeletal muscle;    Notch;   
Others  :  1085296
DOI  :  10.1186/1471-213X-14-2
 received in 2013-11-01, accepted in 2014-01-13,  发布年份 2014
PDF
【 摘 要 】

Notch signalling acts in virtually every tissue during the lifetime of metazoans. Recent studies have pointed to multiple roles for Notch in stem cells during quiescence, proliferation, temporal specification, and maintenance of the niche architecture. Skeletal muscle has served as an excellent paradigm to examine these diverse roles as embryonic, foetal, and adult skeletal muscle stem cells have different molecular signatures and functional properties, reflecting their developmental specification during ontology. Notably, Notch signalling has emerged as a major regulator of all muscle stem cells. This review will provide an overview of Notch signalling during myogenic development and postnatally, and underscore the seemingly opposing contextual activities of Notch that have lead to a reassessment of its role in myogenesis.

【 授权许可】

   
2014 Mourikis and Tajbakhsh; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113172158468.pdf 852KB PDF download
Figure 2. 66KB Image download
Figure 1. 92KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Louvi A, Artavanis-Tsakonas S: Notch and disease: a growing field. Semin Cell Dev Biol 2012, 23(4):473-480.
  • [2]Geffers I, Serth K, Chapman G, Jaekel R, Schuster-Gossler K, Cordes R, Sparrow DB, Kremmer E, Dunwoodie SL, Klein T, et al.: Divergent functions and distinct localization of the Notch ligands DLL1 and DLL3 in vivo. J Cell Biol 2007, 178(3):465-476.
  • [3]Ladi E, Nichols JT, Ge W, Miyamoto A, Yao C, Yang LT, Boulter J, Sun YE, Kintner C, Weinmaster G: The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands. J Cell Biol 2005, 170(6):983-992.
  • [4]Wharton KA, Johansen KM, Xu T, Artavanis-Tsakonas S: Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 1985, 43(3 Pt 2):567-581.
  • [5]Schroeter EH, Kisslinger JA, Kopan R: Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 1998, 393(6683):382-386.
  • [6]Greenwald I: lin-12, a nematode homeotic gene, is homologous to a set of mammalian proteins that includes epidermal growth factor. Cell 1985, 43(3 Pt 2):583-590.
  • [7]Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A: Signalling downstream of activated mammalian Notch. Nature 1995, 377(6547):355-358.
  • [8]Kopan R, Ilagan MX: The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 2009, 137(2):216-233.
  • [9]Fortini ME, Artavanis-Tsakonas S: The suppressor of hairless protein participates in notch receptor signaling. Cell 1994, 79(2):273-282.
  • [10]Schweisguth F, Posakony JW: Suppressor of Hairless, the Drosophila homolog of the mouse recombination signal-binding protein gene, controls sensory organ cell fates. Cell 1992, 69(7):1199-1212.
  • [11]Castel D, Mourikis P, Bartels SJ, Brinkman AB, Tajbakhsh S, Stunnenberg HG: Dynamic binding of RBPJ is determined by Notch signaling status. Genes Dev 2013, 27(9):1059-1071.
  • [12]Krejci A, Bray S: Notch activation stimulates transient and selective binding of Su(H)/CSL to target enhancers. Genes Dev 2007, 21(11):1322-1327.
  • [13]Mourikis P, Sambasivan R, Castel D, Rocheteau P, Bizzarro V, Tajbakhsh S: A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells 2012, 30(2):243-252.
  • [14]Chapouton P, Skupien P, Hesl B, Coolen M, Moore JC, Madelaine R, Kremmer E, Faus-Kessler T, Blader P, Lawson ND, et al.: Notch activity levels control the balance between quiescence and recruitment of adult neural stem cells. J Neurosci 2010, 30(23):7961-7974.
  • [15]Imayoshi I, Sakamoto M, Yamaguchi M, Mori K, Kageyama R: Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. J Neurosci 2010, 30(9):3489-3498.
  • [16]Koch U, Lehal R, Radtke F: Stem cells living with a Notch. Development 2013, 140(4):689-704.
  • [17]Pellegrinet L, Rodilla V, Liu Z, Chen S, Koch U, Espinosa L, Kaestner KH, Kopan R, Lewis J, Radtke F: Dll1- and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells. Gastroenterology 2011, 140(4):1230-1240. e1231-1237
  • [18]Gros J, Manceau M, Thome V, Marcelle C: A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 2005, 435(7044):954-958.
  • [19]Relaix F, Rocancourt D, Mansouri A, Buckingham M: A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 2005, 435(7044):948-953.
  • [20]Kassar-Duchossoy L, Giacone E, Gayraud-Morel B, Jory A, Gomes D, Tajbakhsh S: Pax3/Pax7 mark a novel population of primitive myogenic cells during development. Genes Dev 2005, 19(12):1426-1431.
  • [21]Ben-Yair R, Kalcheim C: Lineage analysis of the avian dermomyotome sheet reveals the existence of single cells with both dermal and muscle progenitor fates. Development 2005, 132(4):689-701.
  • [22]Tajbakhsh S: Skeletal muscle stem cells in developmental versus regenerative myogenesis. J Intern Med 2009, 266(4):372-389.
  • [23]Rudnicki MA, Schnegelsberg PN, Stead RH, Braun T, Arnold HH, Jaenisch R: MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 1993, 75(7):1351-1359.
  • [24]Kassar-Duchossoy L, Gayraud-Morel B, Gomes D, Rocancourt D, Buckingham M, Shinin V, Tajbakhsh S: Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice. Nature 2004, 431(7007):466-471.
  • [25]White RB, Bierinx AS, Gnocchi VF, Zammit PS: Dynamics of muscle fibre growth during postnatal mouse development. BMC Dev Biol 2010, 10:21. BioMed Central Full Text
  • [26]Lepper C, Conway SJ, Fan CM: Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements. Nature 2009, 460(7255):627-631.
  • [27]Delfini MC, Hirsinger E, Pourquie O, Duprez D: Delta 1-activated notch inhibits muscle differentiation without affecting Myf5 and Pax3 expression in chick limb myogenesis. Development 2000, 127(23):5213-5224.
  • [28]Hirsinger E, Malapert P, Dubrulle J, Delfini MC, Duprez D, Henrique D, Ish-Horowicz D, Pourquie O: Notch signalling acts in postmitotic avian myogenic cells to control MyoD activation. Development 2001, 128(1):107-116.
  • [29]Schuster-Gossler K, Cordes R, Gossler A: Premature myogenic differentiation and depletion of progenitor cells cause severe muscle hypotrophy in Delta1 mutants. Proc Natl Acad Sci U S A 2007, 104(2):537-542.
  • [30]Castro DS, Skowronska-Krawczyk D, Armant O, Donaldson IJ, Parras C, Hunt C, Critchley JA, Nguyen L, Gossler A, Gottgens B, et al.: Proneural bHLH and Brn proteins coregulate a neurogenic program through cooperative binding to a conserved DNA motif. Dev Cell 2006, 11(6):831-844.
  • [31]Wittenberger T, Steinbach OC, Authaler A, Kopan R, Rupp RA: MyoD stimulates delta-1 transcription and triggers notch signaling in the Xenopus gastrula. EMBO J 1999, 18(7):1915-1922.
  • [32]Henrique D, Hirsinger E, Adam J, Le Roux I, Pourquie O, Ish-Horowicz D, Lewis J: Maintenance of neuroepithelial progenitor cells by Delta-Notch signalling in the embryonic chick retina. Curr Biol 1997, 7(9):661-670.
  • [33]Dong Z, Yang N, Yeo SY, Chitnis A, Guo S: Intralineage directional notch signaling regulates self-renewal and differentiation of asymmetrically dividing radial glia. Neuron 2012, 74(1):65-78.
  • [34]Vasyutina E, Lenhard DC, Wende H, Erdmann B, Epstein JA, Birchmeier C: RBP-J (Rbpsuh) is essential to maintain muscle progenitor cells and to generate satellite cells. Proc Natl Acad Sci U S A 2007, 104(11):4443-4448.
  • [35]Mourikis P, Gopalakrishnan S, Sambasivan R, Tajbakhsh S: Cell-autonomous Notch activity maintains the temporal specification potential of skeletal muscle stem cells. Development 2012, 139(24):4536-4548.
  • [36]Rios AC, Serralbo O, Salgado D, Marcelle C: Neural crest regulates myogenesis through the transient activation of NOTCH. Nature 2011, 473(7348):532-535.
  • [37]Bjornson CR, Cheung TH, Liu L, Tripathi PV, Steeper KM, Rando TA: Notch signaling is necessary to maintain quiescence in adult muscle stem cells. Stem Cells 2012, 30(2):232-242.
  • [38]Kitamoto T, Hanaoka K: Notch3 null mutation in mice causes muscle hyperplasia by repetitive muscle regeneration. Stem Cells 2010, 28(12):2205-2216.
  • [39]Schonherr E, Hausser HJ: Extracellular matrix and cytokines: a functional unit. Dev Immunol 2000, 7(2–4):89-101.
  • [40]Varnum-Finney B, Wu L, Yu M, Brashem-Stein C, Staats S, Flowers D, Griffin JD, Bernstein ID: Immobilization of Notch ligand, Delta-1, is required for induction of notch signaling. J Cell Sci 2000, 113(Pt 23):4313-4318.
  • [41]Mishra-Gorur K, Rand MD, Perez-Villamil B, Artavanis-Tsakonas S: Down-regulation of Delta by proteolytic processing. J Cell Biol 2002, 159(2):313-324.
  • [42]Pannerec A, Marazzi G, Sassoon D: Stem cells in the hood: the skeletal muscle niche. Trends Mol Med 2012, 18(10):599-606.
  • [43]Christov C, Chretien F, Abou-Khalil R, Bassez G, Vallet G, Authier FJ, Bassaglia Y, Shinin V, Tajbakhsh S, Chazaud B, et al.: Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol Biol Cell 2007, 18(4):1397-1409.
  • [44]De Joussineau C, Soule J, Martin M, Anguille C, Montcourrier P, Alexandre D: Delta-promoted filopodia mediate long-range lateral inhibition in Drosophila. Nature 2003, 426(6966):555-559.
  • [45]Cohen M, Georgiou M, Stevenson NL, Miodownik M, Baum B: Dynamic filopodia transmit intermittent Delta-Notch signaling to drive pattern refinement during lateral inhibition. Dev Cell 2010, 19(1):78-89.
  • [46]Nelson BR, Hodge RD, Bedogni F, Hevner RF: Dynamic interactions between intermediate neurogenic progenitors and radial glia in embryonic mouse neocortex: potential role in Dll1-Notch signaling. J Neurosci 2013, 33(21):9122-9139.
  • [47]Brack AS, Conboy IM, Conboy MJ, Shen J, Rando TA: A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell stem cell 2008, 2(1):50-59.
  • [48]Conboy IM, Rando TA: The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 2002, 3(3):397-409.
  • [49]Sun H, Li L, Vercherat C, Gulbagci NT, Acharjee S, Li J, Chung TK, Thin TH, Taneja R: Stra13 regulates satellite cell activation by antagonizing Notch signaling. J Cell Biol 2007, 177(4):647-657.
  • [50]Rocheteau P, Gayraud-Morel B, Siegl-Cachedenier I, Blasco MA, Tajbakhsh S: A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division. Cell 2012, 148(1–2):112-125.
  • [51]Kondoh K, Sunadome K, Nishida E: Notch signaling suppresses p38 MAPK activity via induction of MKP-1 in myogenesis. J Biol Chem 2007, 282(5):3058-3065.
  • [52]Jones NC, Tyner KJ, Nibarger L, Stanley HM, Cornelison DD, Fedorov YV, Olwin BB: The p38alpha/beta MAPK functions as a molecular switch to activate the quiescent satellite cell. J Cell Biol 2005, 169(1):105-116.
  • [53]Zhang K, Sha J, Harter ML: Activation of Cdc6 by MyoD is associated with the expansion of quiescent myogenic satellite cells. J Cell Biol 2010, 188(1):39-48.
  • [54]Crist CG, Montarras D, Buckingham M: Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules. Cell Stem Cell 2012, 11(1):118-126.
  • [55]Gayraud-Morel B, Chretien F, Jory A, Sambasivan R, Negroni E, Flamant P, Soubigou G, Coppee JY, Di Santo J, Cumano A, et al.: Myf5 haploinsufficiency reveals distinct cell fate potentials for adult skeletal muscle stem cells. J Cell Sci 2012, 125(Pt 7):1738-1749.
  • [56]Machida YJ, Hamlin JL, Dutta A: Right place, right time, and only once: replication initiation in metazoans. Cell 2005, 123(1):13-24.
  • [57]Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, Artavanis-Tsakonas S: Notch signals control the fate of immature progenitor cells in the intestine. Nature 2005, 435(7044):964-968.
  • [58]Radtke F, Raj K: The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer 2003, 3(10):756-767.
  • [59]Gao X, Chandra T, Gratton MO, Quelo I, Prud'homme J, Stifani S, St-Arnaud R: HES6 acts as a transcriptional repressor in myoblasts and can induce the myogenic differentiation program. J Cell Biol 2001, 154(6):1161-1171.
  • [60]Liu L, Cheung TH, Charville GW, Hurgo BM, Leavitt T, Shih J, Brunet A, Rando TA: Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging. Cell Rep 2013, 4(1):189-204.
  • [61]Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, Gherardi RK, Chazaud B: Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 2007, 204(5):1057-1069.
  • [62]Sonnet C, Lafuste P, Arnold L, Brigitte M, Poron F, Authier FJ, Chretien F, Gherardi RK, Chazaud B: Human macrophages rescue myoblasts and myotubes from apoptosis through a set of adhesion molecular systems. J Cell Sci 2006, 119(Pt 12):2497-2507.
  • [63]Joe AW, Yi L, Natarajan A, Le Grand F, So L, Wang J, Rudnicki MA, Rossi FM: Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 2010, 12(2):153-163.
  • [64]Wen Y, Bi P, Liu W, Asakura A, Keller C, Kuang S: Constitutive Notch activation upregulates Pax7 and promotes the self-renewal of skeletal muscle satellite cells. Mol Cell Biol 2012, 32(12):2300-2311.
  • [65]Parker MH, Loretz C, Tyler AE, Duddy WJ, Hall JK, Olwin BB, Bernstein ID, Storb R, Tapscott SJ: Activation of Notch signaling during ex vivo expansion maintains donor muscle cell engraftment. Stem Cells 2012, 30(10):2212-2220.
  • [66]Baonza A, Freeman M: Control of cell proliferation in the Drosophila eye by Notch signaling. Dev Cell 2005, 8(4):529-539.
  • [67]Brohl D, Vasyutina E, Czajkowski MT, Griger J, Rassek C, Rahn HP, Purfurst B, Wende H, Birchmeier C: Colonization of the satellite cell niche by skeletal muscle progenitor cells depends on Notch signals. Dev Cell 2012, 23(3):469-481.
  • [68]Hori K, Sen A, Artavanis-Tsakonas S: Notch signaling at a glance. J Cell Sci 2013, 126(Pt 10):2135-2140.
  • [69]Louvi A, Artavanis-Tsakonas S: Notch and disease: a growing field. Semin Cell Dev Biol 2012.
  • [70]Koch U, Radtke F: Notch and cancer: a double-edged sword. Cell Mol Life Sci 2007, 64(21):2746-2762.
  • [71]Rangarajan A, Talora C, Okuyama R, Nicolas M, Mammucari C, Oh H, Aster JC, Krishna S, Metzger D, Chambon P, et al.: Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J 2001, 20(13):3427-3436.
  文献评价指标  
  下载次数:12次 浏览次数:22次