期刊论文详细信息
BMC Systems Biology
Dynamic cross-regulation of antigen-specific effector and regulatory T cell subpopulations and microglia in brain autoimmunity
Pablo Villoslada4  Jordi Garcia-Ojalvo1  Ivan Martinez-Forero2  Nieves Velez de Mendizabal3  Beatriz Moreno4  Elena Abad1  Sara Martinez-Pasamar4 
[1] Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain;Hospital Pablo Tobón Uribe, Medellin, Colombia;School of Medicine and Indiana Clinical and Translational Sciences Institute, Indiana University, Indianapolis, IN, USA;Center of Neuroimmunology, Institute of Biomedical Research August Pi Sunyer (IDIBAPS), Hospital Clinic of Barcelona, Barcelona, Spain
关键词: Anti-CD20;    Immunotherapy;    Systems biology;    Multiple sclerosis;    Autoimmunity;    Dynamics;    B cells;    Regulatory;    Effector;    T cells;   
Others  :  1142939
DOI  :  10.1186/1752-0509-7-34
 received in 2012-11-23, accepted in 2013-04-23,  发布年份 2013
PDF
【 摘 要 】

Background

Multiple Sclerosis (MS) is considered a T-cell-mediated autoimmune disease with a prototypical oscillatory behavior, as evidenced by the presence of clinical relapses. Understanding the dynamics of immune cells governing the course of MS, therefore, has many implications for immunotherapy. Here, we used flow cytometry to analyze the time-dependent behavior of antigen-specific effector (Teff) and regulatory (Treg) T cells and microglia in mice model of MS, Experimental Autoimmune Encephalomyelitis (EAE), and compared the observations with a mathematical cross-regulation model of T-cell dynamics in autoimmune disease.

Results

We found that Teff and Treg cells specific to myelin olygodendrocyte glycoprotein (MOG) developed coupled oscillatory dynamics with a 4- to 5-day period and decreasing amplitude that was always higher for the Teff populations, in agreement with the mathematical model. Microglia activation followed the oscillations of MOG-specific Teff cells in the secondary lymphoid organs, but they were activated before MOG-specific T-cell peaks in the CNS. Finally, we assessed the role of B-cell depletion induced by anti-CD20 therapy in the dynamics of T cells in an EAE model with more severe disease after therapy. We observed that B-cell depletion decreases Teff expansion, although its oscillatory behavior persists. However, the effect of B cell depletion was more significant in the Treg population within the CNS, which matched with activation of microglia and worsening of the disease. Mathematical modeling of T-cell cross-regulation after anti-CD20 therapy suggests that B-cell depletion may influence the dynamics of T cells by fine-tuning their activation.

Conclusions

The oscillatory dynamics of T-cells have an intrinsic origin in the physiological regulation of the adaptive immune response, which influences both disease phenotype and response to immunotherapy.

【 授权许可】

   
2013 Martinez-Pasamar et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328200605261.pdf 2596KB PDF download
Figure 6. 62KB Image download
Figure 5. 75KB Image download
Figure 4. 60KB Image download
Figure 3. 20KB Image download
Figure 2. 76KB Image download
Figure 1. 98KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Hauser SL, Oksenberg JR: The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron 2006, 52(1):61-76.
  • [2]Sospedra M, Martin R: Immunology of multiple sclerosis. Annu Rev Immunol 2005, 23:683-747.
  • [3]Vollmer T: The natural history of relapses in multiple sclerosis. J Neurol Sci 2007, 256(Suppl 1):S5-S13.
  • [4]Buljevac D, Flach HZ, Hop WC, Hijdra D, Laman JD, Savelkoul HF, Der Meche FG, van Doorn PA, Hintzen RQ: Prospective study on the relationship between infections and multiple sclerosis exacerbations. Brain 2002, 125(Pt 5):952-960.
  • [5]Buljevac D, Hop WC, Reedeker W, Janssens AC, van der Meche FG, van Doorn PA, Hintzen RQ: Self reported stressful life events and exacerbations in multiple sclerosis: prospective study. BMJ 2003, 327(7416):646.
  • [6]Moreno B, Hevia H, Santamaria M, Sepulcre J, Munoz J, Garcia-Trevijano ER, Berasain C, Corrales FJ, Avila MA, Villoslada P: Methylthioadenosine reverses brain autoimmune disease. Ann Neurol 2006, 60(3):323-334.
  • [7]Martin R, McFarland HF, McFarlin DE: Immunological aspects of demyelinating diseases. AnnuRevImmunol 1992, 10:153-187.
  • [8]Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA: Loss of functional suppression by CD4 + CD25+ regulatory T cells in patients with multiple sclerosis. JExpMed 2004, 199(7):971-979.
  • [9]Martinez-Forero I, Garcia-Munoz R, Martinez-Pasamar S, Inoges S, Lopez-Diaz de Cerio A, Palacios R, Sepulcre J, Moreno B, Gonzalez Z, Fernandez-Diez B: IL-10 suppressor activity and ex vivo Tr1 cell function are impaired in multiple sclerosis. Eur J Immunol 2008, 38(2):576-586.
  • [10]Velez deMendizabal N, Carneiro J, Sole RV, Goni J, Bragard J, Martinez-Forero I, Martinez-Pasamar S, Sepulcre J, Torrealdea J, Bagnato F: Modeling the effector - regulatory T cell cross-regulation reveals the intrinsic character of relapses in Multiple Sclerosis. BMC Syst Biol 2011, 5:114. BioMed Central Full Text
  • [11]Leon K, Perez R, Lage A, Carneiro J: Three-cell interactions in T cell-mediated suppression? A mathematical analysis of its quantitative implications. J Immunol 2001, 166(9):5356-5365.
  • [12]Carneiro J, Leon K, Caramalho I, van den Dool C, Gardner R, Oliveira V, Bergman ML, Sepulveda N, Paixao T, Faro J: When three is not a crowd: a Crossregulation Model of the dynamics and repertoire selection of regulatory CD4(+) T cells. Immunol Rev 2007, 216:48-68.
  • [13]Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, Bar-Or A, Panzara M, Sarkar N, Agarwal S: B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 2008, 358(7):676-688.
  • [14]Kappos L, Li D, Calabresi PA, O’Connor P, Bar-Or A, Barkhof F, Yin M, Leppert D, Glanzman R, Tinbergen J: Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet 2011, 378(9805):1779-1787.
  • [15]Bar-Or A, Fawaz L, Fan B, Darlington PJ, Rieger A, Ghorayeb C, Calabresi PA, Waubant E, Hauser SL, Zhang J: Abnormal B-cell cytokine responses a trigger of T-cell-mediated disease in MS? Ann Neurol 2010, 67(4):452-461.
  • [16]Disanto G, Morahan JM, Barnett MH, Giovannoni G, Ramagopalan SV: The evidence for a role of B cells in multiple sclerosis. Neurology 2012, 78(11):823-832.
  • [17]Weber MS, Prod’homme T, Patarroyo JC, Molnarfi N, Karnezis T, Lehmann-Horn K, Danilenko DM, Eastham-Anderson J, Slavin AJ, Linington C: B-cell activation influences T-cell polarization and outcome of anti-CD20 B-cell depletion in central nervous system autoimmunity. Ann Neurol 2010, 68(3):369-383.
  • [18]Soulika AM, Lee E, McCauley E, Miers L, Bannerman P, Pleasure D: Initiation and progression of axonopathy in experimental autoimmune encephalomyelitis. J Neurosci 2009, 29(47):14965-14979.
  • [19]Almeida AR, Zaragoza B, Freitas AA: Indexation as a novel mechanism of lymphocyte homeostasis: the number of CD4 + CD25+ regulatory T cells is indexed to the number of IL-2-producing cells. J Immunol 2006, 177(1):192-200.
  • [20]Fouchet D, Regoes R: A population dynamics analysis of the interaction between adaptive regulatory T cells and antigen presenting cells. PLoS One 2008, 3(5):e2306.
  • [21]Sakaguchi S, Wing K, Yamaguchi T: Dynamics of peripheral tolerance and immune regulation mediated by Treg. Eur J Immunol 2009, 39(9):2331-2336.
  • [22]Sakaguchi S, Miyara M, Costantino CM, Hafler DA: FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 2010, 10(7):490-500.
  • [23]Long SA, Buckner JH: CD4 + FOXP3+ T regulatory cells in human autoimmunity: more than a numbers game. J Immunol 2011, 187(5):2061-2066.
  • [24]Korn T, Anderson AC, Bettelli E, Oukka M: The dynamics of effector T cells and Foxp3+ regulatory T cells in the promotion and regulation of autoimmune encephalomyelitis. J Neuroimmunol 2007, 191(1–2):51-60.
  • [25]Korn T, Reddy J, Gao W, Bettelli E, Awasthi A, Petersen TR, Backstrom BT, Sobel RA, Wucherpfennig KW, Strom TB: Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat Med 2007, 13(4):423-431.
  • [26]Liu X, Alli R, Steeves M, Nguyen P, Vogel P, Geiger TL: The T cell response to IL-10 alters cellular dynamics and paradoxically promotes central nervous system autoimmunity. J Immunol 2012, 189(2):669-678.
  • [27]Baranzini SE, Bernard CC, Oksenberg JR: Modular transcriptional activity characterizes the initiation and progression of autoimmune encephalomyelitis. JImmunol 2005, 174(11):7412-7422.
  • [28]Ransohoff RM, Brown MA: Innate immunity in the central nervous system. J Clin Invest 2012, 122(4):1164-1171.
  • [29]Lucchinetti CF, Popescu BF, Bunyan RF, Moll NM, Roemer SF, Lassmann H, Bruck W, Parisi JE, Scheithauer BW, Giannini C: Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med 2011, 365(23):2188-2197.
  • [30]Sallusto F, Impellizzieri D, Basso C, Laroni A, Uccelli A, Lanzavecchia A, Engelhardt B: T-cell trafficking in the central nervous system. Immunol Rev 2012, 248(1):216-227.
  • [31]Matsushita T, Yanaba K, Bouaziz JD, Fujimoto M, Tedder TF: Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J Clin Invest 2008, 118(10):3420-3430.
  • [32]Ray A, Mann MK, Basu S, Dittel BN: A case for regulatory B cells in controlling the severity of autoimmune-mediated inflammation in experimental autoimmune encephalomyelitis and multiple sclerosis. J Neuroimmunol 2011, 230(1–2):1-9.
  • [33]Lehmann-Horn K, Schleich E, Hertzenberg D, Hapfelmeier A, Kumpfel T, von Bubnoff N, Hohlfeld R, Berthele A, Hemmer B, Weber MS: Anti-CD20 B-cell depletion enhances monocyte reactivity in neuroimmunological disorders. J Neuroinflammation 2011, 8:146. BioMed Central Full Text
  • [34]Barr TA, Shen P, Brown S, Lampropoulou V, Roch T, Lawrie S, Fan B, O’Connor RA, Anderton SM, Bar-Or A: B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6-producing B cells. J Exp Med 2012, 209(5):1001-1010.
  • [35]Hoehlig K, Shen P, Lampropoulou V, Roch T, Malissen B, O’Connor R, Ries S, Hilgenberg E, Anderton SM, Fillatreau S: Activation of CD4(+) Foxp3(+) regulatory T cells proceeds normally in the absence of B cells during EAE. Eur J Immunol 2012, 42(5):1164-1173.
  • [36]von Budingen HC, Bar-Or A, Zamvil SS: B cells in multiple sclerosis: connecting the dots. Curr Opin Immunol 2011, 23(6):713-720.
  • [37]Ray A, Basu S, Williams CB, Salzman NH, Dittel BN: A novel IL-10-independent regulatory role for B cells in suppressing autoimmunity by maintenance of regulatory T cells via GITR ligand. J Immunol 2012, 188(7):3188-3198.
  • [38]Lund FE, Randall TD: Effector and regulatory B cells: modulators of CD4(+) T cell immunity. Nat Rev Immunol 2010, 10(4):236-247.
  • [39]Craig FE, Foon KA: Flow cytometric immunophenotyping for hematologic neoplasms. Blood 2008, 111(8):3941-3967.
  • [40]Palacios R, Goni J, Martinez-Forero I, Iranzo J, Sepulcre J, Melero I, Villoslada P: A network analysis of the human T-cell activation gene network identifies JAGGED1 as a therapeutic target for autoimmune diseases. PLoS One 2007, 2(11):e1222.
  • [41]Amend B, Doster H, Lange C, Dubois E, Kalbacher H, Melms A, Bischof F: Induction of autoimmunity by expansion of autoreactive CD4 + CD62Llow cells in vivo. J Immunol 2006, 177(7):4384-4390.
  • [42]Elyaman W, Kivisakk P, Reddy J, Chitnis T, Raddassi K, Imitola J, Bradshaw E, Kuchroo VK, Yagita H, Sayegh MH: Distinct functions of autoreactive memory and effector CD4+ T cells in experimental autoimmune encephalomyelitis. Am J Pathol 2008, 173(2):411-422.
  • [43]Bischof F, Hofmann M, Schumacher TN, Vyth-Dreese FA, Weissert R, Schild H, Kruisbeek AM, Melms A: Analysis of autoreactive CD4 T cells in experimental autoimmune encephalomyelitis after primary and secondary challenge using MHC class II tetramers. J Immunol 2004, 172(5):2878-2884.
  • [44]Kohm AP, Carpentier PA, Anger HA, Miller SD: Cutting edge: CD4 + CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J Immunol 2002, 169(9):4712-4716.
  • [45]Vukmanovic-Stejic M, Zhang Y, Cook JE, Fletcher JM, McQuaid A, Masters JE, Rustin MH, Taams LS, Beverley PC, Macallan DC: Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J Clin Invest 2006, 116(9):2423-2433.
  • [46]Yanaba K, Hamaguchi Y, Venturi GM, Steeber DA, St Clair EW, Tedder TF: B cell depletion delays collagen-induced arthritis in mice: arthritis induction requires synergy between humoral and cell-mediated immunity. J Immunol 2007, 179(2):1369-1380.
  • [47]Ponomarev ED, Shriver LP, Maresz K, Dittel BN: Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J Neurosci Res 2005, 81(3):374-389.
  • [48]Mack CL, Vanderlugt-Castaneda CL, Neville KL, Miller SD: Microglia are activated to become competent antigen presenting and effector cells in the inflammatory environment of the Theiler’s virus model of multiple sclerosis. J Neuroimmunol 2003, 144(1–2):68-79.
  • [49]Rue P, Garcia-Ojalvo J: Gene circuit designs for noisy excitable dynamics. Math Biosci 2011, 231(1):90-97.
  文献评价指标  
  下载次数:92次 浏览次数:28次