期刊论文详细信息
BMC Microbiology
Prevalence and characterization of Salmonella enterica from the feces of cattle, poultry, swine and hedgehogs in Burkina Faso and their comparison to human Salmonella isolates
Kaisa Haukka1  Anja Siitonen3  Nicolas Barro2  Alfred S Traoré2  Laura Aulu3  Taru Lienemann3  Assèta Kagambèga2 
[1] Department of Food and Environmental Sciences, Division of Microbiology, University of Helsinki, Helsinki, Finland;Laboratoire de Biologie Moléculaire et d’Epidémiologie et de Surveillance Bactéries et Virus transmis par les Aliments, CRSBAN, Département de Biochimie-Microbiologie, UFR-SVT/Université de Ouagadougou, Ouagadougou, Burkina Faso;Bacteriology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare (THL), Helsinki, Finland
关键词: PFGE;    Genetic relatedness;    Antimicrobial resistance;    Serotypes;    Salmonella;   
Others  :  1142698
DOI  :  10.1186/1471-2180-13-253
 received in 2013-05-11, accepted in 2013-10-31,  发布年份 2013
PDF
【 摘 要 】

Background

Production and wild animals are major sources of human salmonellosis and animals raised for food also play an important role in transmission of antimicrobial resistant Salmonella strains to humans. Furthermore, in sub-Saharan Africa non-typhoidal Salmonella serotypes are common bloodstream isolates in febrile patients. Yet, little is known about the environmental reservoirs and predominant modes of transmission of these pathogens. The purpose of this study was to discover potential sources and distribution vehicles of Salmonella by isolating strains from apparently healthy slaughtered food animals and wild hedgehogs and by determining the genetic relatedness between the strains and human isolates. For this purpose, 729 feces samples from apparently healthy slaughtered cattle (n = 304), poultry (n = 350), swine (n = 50) and hedgehogs (n = 25) were examined for the presence of Salmonella enterica in Burkina Faso. The isolates were characterized by serotyping, antimicrobial-susceptibility testing, phage typing, and pulsed-field gel electrophoresis (PFGE) with XbaI and BlnI restriction enzymes.

Results

Of the 729 feces samples, 383 (53%) contained Salmonella, representing a total of 81 different serotypes. Salmonella was present in 52% of the cattle, 55% of the poultry, 16% of the swine and 96% of the hedgehog feces samples. Antimicrobial resistance was detected in 14% of the isolates. S. Typhimurium isolates from poultry and humans (obtained from a previous study) were multiresistant to the same antimicrobials (ampicillin, chloramphenicol, streptomycin, sulfonamides and trimethoprim), had the same phage type DT 56 and were closely related in PFGE. S. Muenster isolates from hedgehogs had similar PFGE patterns as the domestic animals.

Conclusions

Based on our results it seems that production and wild animals can share the same Salmonella serotypes and potentially transmit some of them to humans. As the humans and animals often live in close vicinity in Africa and the hygiene control of the meat retail chain is defective, high Salmonella carriage rates of the animals can pose a major public health risk in Burkina Faso. This underlines the necessity for a joint and coordinated surveillance and monitoring programs for salmonellosis in Africa.

【 授权许可】

   
2013 Kagambèga et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328124240389.pdf 582KB PDF download
Figure 1. 82KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O’Brien SJ, Jones TF, Fazil A, Hoekstra RM: The Global Burden of Nontyphoidal Salmonella Gastroenteritis. Clin Infect Dis 2010, 50:882-889.
  • [2]Bryce J, Boschi-Pinto C, Shibuya K, Back RE: WHO estimates of the causes of death in children. Lancet 2005, 365:1147-1152.
  • [3]Morpeth SC, Ramadhani HO, Crump JA: Invasive non-Typhi Salmonella disease in Africa. Clin Infect Dis 2009, 49:606-611.
  • [4]Acha PN, Szyfres B: Salmonellosis. In Zoonoses and Communicable Diseases Common to Man and Animals, Volume I: Bacterioses and Mycoses. 3rd edition. Edited by Acha PN, Szyfres B. Washington, D.C: Pan American Health Organization; 2001:233-246.
  • [5]Kariuki S, Revathi G, Kariuki N, Kiiru J, Mwituria J, Muyodi J, Githinji JW, Kagendo D, Munyalo A, Hart CA: Invasive multidrug-resistant non-typhoidal Salmonella infections in Africa: zoonotic or anthroponotic transmission? J Med Microbiol 2006, 55:585-591.
  • [6]Thorns CJ: Bacterial food-borne zoonoses. Rev Sci Tech 2000, 19:226-239.
  • [7]Gillespie IA, O’Brien SJ, Adak GK, Ward LR, Smith HR: Foodborne general outbreaks of Salmonella Enteritidis phage type 4 infection, England and Wales, 1992–2002: where are the risks? Epidemiol Infect 2005, 133:795-801.
  • [8]Stopforth JD, Lopes M, Shultz JE, Miksch RR, Samadpour M: Location of bung bagging during beef slaughter influences the potential for spreading pathogen contamination on beef carcasses. J Food Prot 2006, 69:1452-1455.
  • [9]Glaser CA, Angulo FJ, Rooney J: Animal-associated opportunistic infections in HIV-infected persons. Clin Infect Dis 1994, 18:14-24.
  • [10]Riley PY, Chomel BB: Hedgehog zoonoses. Emerg Infect Dis 2005, 11:1-5.
  • [11]White DG, Zhao S, Sudler R, Ayers S, Friedman S, Chen S, McDermott PF, McDermott S, Wagner DD, Meng J: The isolation of antibiotic resistant Salmonella from retail ground meat. New Engl J Med 2001, 345:1147-1154.
  • [12]Threlfall EJ: Antimicrobial drug resistance in Salmonella: problems and perspectives in food- and water-borne infections. FEMS Microbiol Rev 2002, 26:141-148.
  • [13]Kagambèga A, Haukka K, Siitonen A, Traoré AS, Barro N: Prevalence of Salmonella enterica and the hygienic indicator Escherichia coli in raw meat at markets in Ouagadougou, Burkina Faso. J Food Prot 2011, 74:1547-1551.
  • [14]Kagambega A, Barro N, Traoré AS, Siitonen A, Haukka K: Characterization of Salmonella enterica and detection of the virulence genes specific to diarrheagenic Escherichia coli from poultry carcasses in Ouagadougou, Burkina Faso. Foodborne Pathog Dis 2012, 9:589-593.
  • [15]CDC: African pygmy hedgehog-associated salmonellosis. MMWR Morb Mortal Wkly Rep 1995, 44:462-463.
  • [16]Craig C, Styliadis S, Woodward D, Werker D: African pygmy hedgehog-associated Salmonella tilene in Canada. Can Commun Dis Rep 1997, 23:129-131.
  • [17]Bonkoungou IJO, Haukka K, Österblad M, Hakanen AJ, Traoré AS, Barro N, Siitonen A: Bacterial and viral etiology of childhood diarrhea in Ouagadougou. Burkina Faso. BMC Pediatr 2013, 13:36.
  • [18]Mølbak K, Olsen JE, Wegener HC: Salmonella infections. In Foodborne Infections and Intoxications. 3rd edition. Edited by Riemann HP, Cliver DO. The Netherlands: Elsevier; 2006:57-136.
  • [19]Ishihara K, Takahashi T, Morioka A, Kojima A, Kijima , Asai T, Tamura Y: National surveillance of Salmonella enterica in food-producing animals in Japan. Acta Vet Scand 2009, 51:35.
  • [20]Dione MM, Ikumapayi UN, Saha D, Mohammed NI, Geerts S, Ieven M, Adegbola RA, Antonio M: Clonal differences between non-typhoidal salmonella (NTS) recovered from children and animals living in close contact in the Gambia. PLoS Negl Trop Dis 2011, 5:1148.
  • [21]Fashae K, Ogunsola F, Aarestrup FM, Hendriksen RS: Antimicrobial susceptibility and serovars of Salmonella from chickens and humans in Ibadan, Nigeria. J Infect Dev Ctries 2010, 4:484-494.
  • [22]Milnes AS, Sayers AR, Stewart I, Clifton-Hadley FA, Davies RH, Newell DG, Cook AJ, Evans SJ, Smith RP, Paiba GA: Factors related to the carriage of Verocytotoxigenic E. coli, Salmonella, thermophilic Campylobacter and Yersinia enterocolitica in cattle, sheep and pigs at slaughter. Epidemiol Infect 2009, 137:1135-1148.
  • [23]Molla B, Alemayehu D, Salah W: Sources and distribution of Salmonella serotypes isolated from food animals, slaughterhouse personnel and retail meat products in Ethiopia: 1997–2002. Ethip J Health Dev 2003, 17:63-70.
  • [24]Lomonaco S, Decastelli L, Bianchi DM, Nucera D, Grassi MA, Sperone V, Civera T: Detection of Salmonella in finishing pigs on farm and at slaughter in Piedmont, Italy. Zoonoses Public Health 2009, 56:137-144.
  • [25]Kikuvi GM, Ombui JN, Mitema ES: Serotypes and antimicrobial resistance profiles of Salmonella isolates from pigs at slaughter in Kenya. J Infect Dev Ctries 2010, 4:243-248.
  • [26]CDC: Salmonella surveillance: annual summary, 2006. Atlanta, GA: Centers for Disease Control and Prevention; 2008. http://www.cdc.gov/ncidod/dbmd/phlisdata/salmonella.htm webcite
  • [27]Hendriksen RS, Vieira AR, Karlsmose S, Lo Fo Wong DM, Jensen AB, Wegener HC, Aarestrup FM: Global monitoring of Salmonella serovar distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: results of quality assured laboratories from 2001 to 2007. Foodborne Pathog Dis 2011, 8:887-900.
  • [28]Makaya PV, Matope G, Pfukenyi DM: Distribution of Salmonella serovars and antimicrobial susceptibility of Salmonella Enteritidis from poultry in Zimbabwe. Avian Pathol 2012, 41:221-226.
  • [29]Ayachi A, Alloui N, Bennoune O, Kassah-Laouar A: Survey of Salmonella serovars in broilers and laying breeding reproducers in Eastern Algeria. J Infect Dev Ctries 2010, 4:103-106.
  • [30]Kingsley RA, Msefula CL, Thomson NR, Kariuki S, Holt KE, Gordon MA, Harris D, Clarke L, Whitehead S, Sangal V, Marsh K, Achtman M, Molyneux ME, Cormican M, Parkhill J, MacLennan CA, Heyderman RS, Dougan G: Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Res 2009, 19:2279-2287.
  • [31]Green SDR, Cheesbrough JS: Salmonella bacteraemia among young children at a rural hospital in western Zaire. Ann Trop Paediatr 1993, 13:45-53.
  • [32]Leegaard TM, Van Gestel MH, Petit PLC, Van de Klundert JAM: Antibiotic resistance mechanisms in Salmonella species causing bacteraemia in Malawi and Kenya. APMZS 1996, 104:302-306.
  • [33]Lepage P, Bogaerts J, Nsengumuremyi F, Hitimana DG, Van Goethem C, Vandepitte J, Butzler JP: Severe multiresistant Salmonella typhimurium systemic infections in Central Africa - clinical features and treatment in a paediatric department. J Antimicrob Chemother 1984, 14(Suppl B):153-159.
  • [34]Ungemach FR, Müller-Bahrdt D, Abraham G: Guidelines for prudent use of antimicrobials and their implications on antibiotic usage in veterinary medicine. Inter J Med Microbiol 2006, 296:33-38.
  • [35]Feasey NA, Dougan G, Kingsley RA, Heyderman RS, Gordon MA: Invasive non-typhoidal Salmonella disease: an emerging and neglected tropical disease in Africa. Lancet 2012, 379:2489-2499.
  • [36]Kariuki S, Gilks C, Kimari J, Muyodi J, Waiyaki P, Hart CA: Analysis of Salmonella enterica serotype Typhimurium by phagetyping, antimicrobial susceptibility and pulsed-field gel electrophoresis. J Med Microbiol 1999, 48:1037-1042.
  • [37]Threlfall EJ: Epidemic Salmonella typhimurium DT104 – a truly international multiresistant clone. J Antimicrob Chemother 2000, 46:7-10.
  • [38]Harbottle H, White DG, McDermott PF, Walker RD, Zhao S: Comparison of multilocus sequence typing, pulsed-field gel electrophoresis, and antimicrobial susceptibility typing for characterization of Salmonella enterica serotype Newport isolates. J Clin Microbiol 2006, 44:2449-2457.
  • [39]Gaul SB, Wedel S, Erdman MM, Harris DL, Harris IT, Ferris KE, Hoffman L: Use of pulsed-field gel electrophoresis of conserved XbaI fragments for identification of swine Salmonella serotypes. J Clin Microbiol 2007, 45:472-476.
  • [40]Cardinale E, Perrier Gros-Claude JD, Rivoal K, Rose V, Tall F, Mead GC, Salvat G: Epidemiological analysis of Salmonella enterica ssp. enterica serovars Hadar, Brancaster and Enteritidis from humans and broiler chickens in Senegal using pulsed-field gel electrophoresis and antibiotic susceptibility. J Appl Microbiol 2005, 99:968-977.
  • [41]Winfield MD, Groisman EA: Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli. Appl Environ Microbiol 2003, 69:3687-3694.
  • [42]Parker CT, Huynh S, Quinones B, Harris LJ, Mandrell RE: Comparison of genotypes of Salmonella enterica serovar Enteritidis phage type 30 and 9c strains isolated during three outbreaks associated with raw almonds. Appl Environ Microbiol 2010, 76:3723-3731.
  • [43]Kagambèga A, Martikainen O, Siitonen A, Traoré AS, Barro N, Haukka K: Prevalence of diarrheagenic Escherichia coli virulence genes in the feces of slaughtered cattle, chickens, and pigs in Burkina Faso. MicrobiologyOpen 2012, 1:276-284.
  • [44]Popoff MY, Bockemuhl J, Gheesling LL: Supplement 2002 (no. 46) to the Kauffmann-White scheme. Res Microbiol 2004, 155:568-570.
  • [45]Anderson ES, Ward LR, Saxe MJ, de Sa JD: Bacteriophage typing designations of Salmonella typhimurium. J Hyg (Lond) 1977, 78:297-300.
  • [46]CLSI (Clinical and Laboratory Standards Institute): Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. 2009. http://www.clsi.org/source/orders/free/m07-a8.pdf webcite. Accessed 1. Dec 2011
  • [47]PulseNet: One-day (24–48 h) standardized laboratory protocol for molecular subtyping of Escherichia coli O157:H7, non-typhoidal Salmonella serotypes, and Shigella sonnei by pulsed field gel electrophoresis (PFGE). 2002. http://www.cdc.gov/pulsenet/protocols/ecoli-salmonella-shigella-protocols.pdf webcite. Accessed 11 Jul 2006
  文献评价指标  
  下载次数:17次 浏览次数:17次