BMC Systems Biology | |
Computational modelling and analysis of the molecular network regulating sporulation initiation in Bacillus subtilis | |
Gary C Barker1  Ivan Mura2  Adaoha EC Ihekwaba1  | |
[1] Gut Health and Food Safety, Institute of Food Research, Norwich Research Park, Colney, Norwich, UK;Faculty of Engineering, EAN University, Carrera 11 No. 78 – 47, Bogotá, Colombia | |
关键词: Bacillus subtilis; Sporulation; Signal transduction; Sensitivity analysis; Computational modelling; Systems biology; | |
Others : 1091852 DOI : 10.1186/s12918-014-0119-x |
|
received in 2014-08-08, accepted in 2014-10-13, 发布年份 2014 | |
【 摘 要 】
Background
Bacterial spores are important contaminants in food, and the spore forming bacteria are often implicated in food safety and food quality considerations. Spore formation is a complex developmental process involving the expression of more than 500 genes over the course of 6 to 8 hrs. The process culminates in the formation of resting cells capable of resisting environmental extremes and remaining dormant for long periods of time, germinating when conditions promote further vegetative growth. Experimental observations of sporulation and germination are problematic and time consuming so that reliable models are an invaluable asset in terms of prediction and risk assessment. In this report we develop a model which assists in the interpretation of sporulation dynamics.
Results
This paper defines and analyses a mathematical model for the network regulating Bacillus subtilis sporulation initiation, from sensing of sporulation signals down to the activation of the early genes under control of the master regulator Spo0A. Our model summarises and extends other published modelling studies, by allowing the user to execute sporulation initiation in a scenario where Isopropyl β-D-1-thiogalactopyranoside (IPTG) is used as an artificial sporulation initiator as well as in modelling the induction of sporulation in wild-type cells. The analysis of the model results and the comparison with experimental data indicate that the model is good at predicting inducible responses to sporulation signals. However, the model is unable to reproduce experimentally observed accumulation of phosphorelay sporulation proteins in wild type B. subtilis. This model also highlights that the phosphorelay sub-component, which relays the signals detected by the sensor kinases to the master regulator Spo0A, is crucial in determining the response dynamics of the system.
Conclusion
We show that there is a complex connectivity between the phosphorelay features and the master regulatory Spo0A. Additional we discovered that the experimentally observed regulation of the phosphotransferase Spo0B for wild-type B. subtilis may be playing an important role in the network which suggests that modelling of sporulation initiation may require additional experimental support.
【 授权许可】
2014 Ihekwaba et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150128174714799.pdf | 1332KB | download | |
Figure 10. | 28KB | Image | download |
Figure 9. | 27KB | Image | download |
Figure 8. | 17KB | Image | download |
Figure 7. | 31KB | Image | download |
Figure 6. | 14KB | Image | download |
Figure 5. | 21KB | Image | download |
Figure 4. | 16KB | Image | download |
Figure 3. | 15KB | Image | download |
Figure 2. | 67KB | Image | download |
Figure 1. | 35KB | Image | download |
Figure 10. | 28KB | Image | download |
Figure 9. | 27KB | Image | download |
Figure 8. | 17KB | Image | download |
Figure 7. | 31KB | Image | download |
Figure 6. | 14KB | Image | download |
Figure 5. | 21KB | Image | download |
Figure 4. | 16KB | Image | download |
Figure 3. | 15KB | Image | download |
Figure 2. | 67KB | Image | download |
Figure 1. | 29KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
【 参考文献 】
- [1]Opinion of the scientific panel on biological hazards (BIOHAZ) related to clostridium spp in foodstuffs EFSA J 2005, 199:1-65.
- [2]Opinion of the scientific panel on biological hazards (BIOHAZ) on bacillus cereus and other bacillus spp in foodstuffs EFSA J 2005, 175:1-48.
- [3]Carlin F: Origin of bacterial spores contaminating foods. Food Microbiol 2011, 28(2):177-182.
- [4]Heyndrickx M: The importance of endospore-forming bacteria originating from soil for contamination of industrial food processing. Appl Environ Soil Sci 2011, 2011:11.
- [5]Stragier P, Losick R: Molecular genetics of sporulation in Bacillus subtilis. Annu Rev Genet 1996, 30:297-241.
- [6]De Jong H, Geiselmann J, Batt G, Hernandez C, Page M: Qualitative simulation of the initiation of sporulation in Bacillus subtilis. Bull Math Biol 2004, 66(2):261-299.
- [7]Fawcett P, Eichenberger P, Losick R, Youngman P: The transcriptional profile of early to middle sporulation in Bacillus subtilis. Proc Natl Acad Sci U S A 2000, 97(14):8063-8068.
- [8]Hoffmann A, Levchenko A, Scott ML, Baltimore D: The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science 2002, 298(5596):1241-1245.
- [9]Ihekwaba AE, Broomhead DS, Grimley RL, Benson N, Kell DB: Sensitivity analysis of parameters controlling oscillatory signalling in the NF-kappaB pathway: the roles of IKK and IkappaBalpha. Syst Biol 2004, 1(1):93-103.
- [10]Nelson DE, Ihekwaba AE, Elliott M, Johnson JR, Gibney CA, Foreman BE, Nelson G, See V, Horton CA, Spiller DG, Edwards SW, McDowell HP, Unitt JF, Sullivan E, Grimley R, Benson N, Broomhead D, Kell DB, White MR: Oscillations in NF-kappaB signaling control the dynamics of gene expression. Science 2004, 306(5696):704-708.
- [11]Bischofs IB, Hug JA, Liu AW, Wolf DM, Arkin AP: Complexity in bacterial cell–cell communication: quorum signal integration and subpopulation signaling in the Bacillus subtilis phosphorelay. Proc Natl Acad Sci 2009, 106(16):6459-6464.
- [12]Chastanet A, Vitkup D, Yuan GC, Norman TM, Liu JS, Losick RM: Broadly heterogeneous activation of the master regulator for sporulation in Bacillus subtilis. Proc Natl Acad Sci U S A 2010, 107(18):8486-8491.
- [13]Jabbari S, Heap JT, King JR: Mathematical modelling of the sporulation-initiation network in Bacillus subtilis revealing the dual role of the putative quorum-sensing signal molecule PhrA. Bull Math Biol 2011, 73(1):181-211.
- [14]Kothamachu VB, Feliu E, Wiuf C, Cardelli L, Soyer OS: Phosphorelays provide tunable signal processing capabilities for the cell. PLoS Comput Biol 2013, 9(11):e1003322.
- [15]Kuchina A, Espinar L, Garcia-Ojalvo J, Suel GM: Reversible and noisy progression towards a commitment point enables adaptable and reliable cellular decision-making. PLoS Comput Biol 2011, 7(11):e1002273.
- [16]Narula J, Devi SN, Fujita M, Igoshin OA: Ultrasensitivity of the Bacillus subtilis sporulation decision. Proc Natl Acad Sci U S A 2012, 109(50):E3513-E3522.
- [17]Sen S, Garcia-Ojalvo J, Elowitz MB: Dynamical consequences of bandpass feedback loops in a bacterial phosphorelay. PLoS One 2011, 6(9):e25102.
- [18]Vishnoi M, Narula J, Devi SN, Dao HA, Igoshin OA, Fujita M: Triggering sporulation in Bacillus subtilis with artificial two-component systems reveals the importance of proper Spo0A activation dynamics. Mol Microbiol 2013, 90(1):181-194.
- [19]Levine JH, Fontes ME, Dworkin J, Elowitz MB: Pulsed feedback defers cellular differentiation. PLoS Biol 2012, 10(1):e1001252.
- [20]Fujita M, Losick R: Evidence that entry into sporulation in Bacillus subtilis is governed by a gradual increase in the level and activity of the master regulator Spo0A. Genes Dev 2005, 19(18):2236-2244.
- [21]Muchova K, Lewis RJ, Perecko D, Brannigan JA, Ladds JC, Leech A, Wilkinson AJ, Barak I: Dimer-induced signal propagation in Spo0A. Mol Microbiol 2004, 53(3):829-842.
- [22]Varughese KI: Molecular recognition of bacterial phosphorelay proteins. Curr Opin Microbiol 2002, 5(2):142-148.
- [23]Seredick S, Spiegelman GB: Lessons and questions from the structure of the Spo0A activation domain. Trends Microbiol 2001, 9(4):148-151.
- [24]Fujita M, Gonzalez-Pastor JE, Losick R: High- and low-threshold genes in the Spo0A regulon of Bacillus subtilis. J Bacteriol 2005, 187(4):1357-1368.
- [25]Perego M, Wu JJ, Spiegelman GB, Hoch JA: Mutational dissociation of the positive and negative regulatory properties of the Spo0A sporulation transcription factor of Bacillus subtilis. Gene 1991, 100:207-212.
- [26]Trach K, Burbulys D, Strauch M, Wu JJ, Dhillon N, Jonas R, Hanstein C, Kallio P, Perego M, Bird T, Spiegelman G, Fogher C, Hoch JA: Control of the initiation of sporulation in Bacillus subtilis by a phosphorelay. Res Microbiol 1991, 142(7–8):815-823.
- [27]York K, Kenney TJ, Satola S, Moran CP Jr, Poth H, Youngman P: Spo0A controls the sigma A-dependent activation of Bacillus subtilis sporulation-specific transcription unit spoIIE. J Bacteriol 1992, 174(8):2648-2658.
- [28]Satola SW, Baldus JM, Moran CP Jr: Binding of Spo0A stimulates spoIIG promoter activity in Bacillus subtilis. J Bacteriol 1992, 174(5):1448-1453.
- [29]Satola S, Kirchman PA, Moran CP Jr: Spo0A binds to a promoter used by sigma A RNA polymerase during sporulation in Bacillus subtilis. Proc Natl Acad Sci U S A 1991, 88(10):4533-4537.
- [30]Lewis PJ, Wu LJ, Errington J: Establishment of prespore-specific gene expression in Bacillus subtilis: localization of SpoIIE phosphatase and initiation of compartment-specific proteolysis. J Bacteriol 1998, 180(13):3276-3284.
- [31]Strauch M, Webb V, Spiegelman G, Hoch JA: The SpoOA protein of Bacillus subtilis is a repressor of the abrB gene. Proc Natl Acad Sci U S A 1990, 87(5):1801-1805.
- [32]Strauch MA, Wu JJ, Jonas RH, Hoch JA: A positive feedback loop controls transcription of the spoOF gene, a component of the sporulation phosphorelay in Bacillus subtilis. Mol Microbiol 1993, 7(6):967-974.
- [33]Tojo S, Hirooka K, Fujita Y: Expression of kinA and kinB of Bacillus subtilis, necessary for sporulation initiation, is under positive stringent transcription control. J Bacteriol 2013, 195(8):1656-1665.
- [34]Jiang M, Shao W, Perego M, Hoch JA: Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol Microbiol 2000, 38(3):535-542.
- [35]Rowland SL, Burkholder WF, Cunningham KA, Maciejewski MW, Grossman AD, King GF: Structure and mechanism of action of Sda, an inhibitor of the histidine kinases that regulate initiation of sporulation in Bacillus subtilis. Mol Cell 2004, 13(5):689-701.
- [36]Molle V, Nakaura Y, Shivers RP, Yamaguchi H, Losick R, Fujita Y, Sonenshein AL: Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis. J Bacteriol 2003, 185(6):1911-1922.
- [37]Gardner TS, Cantor CR, Collins JJ: Construction of a genetic toggle switch in Escherichia coli. Nature 2000, 403(6767):339-342.
- [38]Eswaramoorthy P, Duan D, Dinh J, Dravis A, Devi SN, Fujita M: The threshold level of the sensor histidine kinase KinA governs entry into sporulation in bacillus subtilis. J Bacteriol 2010, 192(15):3870-3882.
- [39]Eswaramoorthy P, Guo T, Fujita M: In vivo domain-based functional analysis of the major sporulation sensor kinase, KinA, in Bacillus subtilis. J Bacteriol 2009, 191(17):5358-5368.
- [40]Winnen B, Anderson E, Cole JL, King GF, Rowland SL: Role of the PAS sensor domains in the Bacillus subtilis sporulation kinase KinA. J Bacteriol 2013, 195(10):2349-2358.
- [41]Lee J, Tomchick DR, Brautigam CA, Machius M, Kort R, Hellingwerf KJ, Gardner KH: Changes at the KinA PAS-A dimerization interface influence histidine kinase function. Biochemistry 2008, 47(13):4051-4064.
- [42]Wang L, Fabret C, Kanamaru K, Stephenson K, Dartois V, Perego M, Hoch JA: Dissection of the functional and structural domains of phosphorelay histidine kinase A of Bacillus subtilis. J Bacteriol 2001, 183(9):2795-2802.
- [43]Lewis M: The lac repressor. Comptes Rendus Biol 2005, 328(6):521-548.
- [44]Dunaway M, Olson JS, Rosenberg JM, Kallai OB, Dickerson RE, Matthews KS: Kinetic studies of inducer binding to lac repressor.operator complex. J Biol Chem 1980, 255(21):10115-10119.
- [45]Bell CE, Lewis M: A closer view of the conformation of the Lac repressor bound to operator. Nat Struct Biol 2000, 7(3):209-214.
- [46]Burbulys D, Trach KA, Hoch JA: Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 1991, 64(3):545-552.
- [47]Mandic-Mulec I, Gaur N, Bai U, Smith I: Sin, a stage-specific repressor of cellular differentiation. J Bacteriol 1992, 174(11):3561-3569.
- [48]Shafikhani SH, Mandic-Mulec I, Strauch MA, Smith I, Leighton T: Postexponential regulation of sin operon expression in Bacillus subtilis. J Bacteriol 2002, 184(2):564-571.
- [49]Cervin MA, Lewis RJ, Brannigan JA, Spiegelman GB: The Bacillus subtilis regulator SinR inhibits spoIIG promoter transcription in vitro without displacing RNA polymerase. Nucleic Acids Res 1998, 26(16):3806-3812.
- [50]Perego M, Hanstein C, Welsh KM, Djavakhishvili T, Glaser P, Hoch JA: Multiple protein-aspartate phosphatases provide a mechanism for the integration of diverse signals in the control of development in B. subtilis. Cell 1994, 79(6):1047-1055.
- [51]Perego M, Hoch JA: Negative regulation of Bacillus subtilis sporulation by the spo0E gene product. J Bacteriol 1991, 173(8):2514-2520.
- [52]McQuade RS, Comella N, Grossman AD: Control of a family of phosphatase regulatory genes (phr) by the alternate sigma factor sigma-H of Bacillus subtilis. J Bacteriol 2001, 183(16):4905-4909.
- [53]Perego M, Glaser P, Hoch JA: Aspartyl-phosphate phosphatases deactivate the response regulator components of the sporulation signal transduction system in Bacillus subtilis. Mol Microbiol 1996, 19(6):1151-1157.
- [54]Diaz AR, Stephenson S, Green JM, Levdikov VM, Wilkinson AJ, Perego M: Functional role for a conserved aspartate in the Spo0E signature motif involved in the dephosphorylation of the Bacillus subtilis sporulation regulator Spo0A. J Biol Chem 2008, 283(5):2962-2972.
- [55]Stephenson SJ, Perego M: Interaction surface of the Spo0A response regulator with the Spo0E phosphatase. Mol Microbiol 2002, 44(6):1455-1467.
- [56]Eswaramoorthy P, Dinh J, Duan D, Igoshin OA, Fujita M: Single-cell measurement of the levels and distributions of the phosphorelay components in a population of sporulating Bacillus subtilis cells. Microbiology 2010, 156(8):2294-2304.
- [57]Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U: COPASI–a COmplex PAthway SImulator. Bioinformatics 2006, 22(24):3067-3074.
- [58]Mendes P, Kell D: Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 1998, 14(10):869-883.
- [59]Ingalls BP, Sauro HM: Sensitivity analysis of stoichiometric networks: an extension of metabolic control analysis to non-steady state trajectories. J Theor Biol 2003, 222(1):23-36.
- [60]Kuo BC: Automatic Control Systems. Prentice Hall, Upper Saddle River, New Jersey, USA; 1987.
- [61]Cho KH, Shin SY, Kolch W, Wolkenhauer O: Experimental design in systems biology based on parameter sensitivity analysis with monte carlo simulation: a case study for the TNFalpha mediated NF-kappaB signal transduction pathway. Simulation 2003, 79:11-12.
- [62]Gentleman R: R Programming for Bioinformatics. Chapman & Hall/CRC, London; 2008.
- [63]Carabetta VJ, Tanner AW, Greco TM, Defrancesco M, Cristea IM, Dubnau D: A complex of YlbF, YmcA and YaaT regulates sporulation, competence and biofilm formation by accelerating the phosphorylation of Spo0A. Mol Microbiol 2013, 88(2):283-300.
- [64]Grimshaw CE, Huang S, Hanstein CG, Strauch MA, Burbulys D, Wang L, Hoch JA, Whiteley JM: Synergistic kinetic interactions between components of the phosphorelay controlling sporulation in Bacillus subtilis. Biochemistry 1998, 37(5):1365-1375.