期刊论文详细信息
BMC Microbiology
sigE facilitates the adaptation of Bordetella bronchiseptica to stress conditions and lethal infection in immunocompromised mice
Sarah E Ades4  Eric T Harvill3  Maria E Rodriguez2  Sara E Hester3  Xuqing Zhang1  Sarah E Barchinger4 
[1] current address: Department of Microbiology and Immunology, Harvard Medical School, 200 Longwood Ave, Boston, MA, 02115, USA;CINDEFI (UNLP, CONICET La Plata), School of Science, La Plata University, La Plata, Argentina;Department of Veterinary and Biomedical Sciences, Pennsylvania State University, W210 Millennium Science Complex, University Park, PA, 16802, USA;Department of Biochemistry and Molecular Biology, Pennsylvania State University, 406 Althouse Laboratory, University Park, PA, 16802, USA
关键词: Pathogenesis;    Cell envelope stress;    Extracytoplasmic function sigma factor;    B. bronchiseptica;   
Others  :  1221785
DOI  :  10.1186/1471-2180-12-179
 received in 2011-12-07, accepted in 2012-06-25,  发布年份 2012
PDF
【 摘 要 】

Background

The cell envelope of a bacterial pathogen can be damaged by harsh conditions in the environment outside a host and by immune factors during infection. Cell envelope stress responses preserve the integrity of this essential compartment and are often required for virulence. Bordetella species are important respiratory pathogens that possess a large number of putative transcription factors. However, no cell envelope stress responses have been described in these species. Among the putative Bordetella transcription factors are a number of genes belonging to the extracytoplasmic function (ECF) group of alternative sigma factors, some of which are known to mediate cell envelope stress responses in other bacteria. Here we investigate the role of one such gene, sigE, in stress survival and pathogenesis of Bordetella bronchiseptica.

Results

We demonstrate that sigE encodes a functional sigma factor that mediates a cell envelope stress response. Mutants of B. bronchiseptica strain RB50 lacking sigE are more sensitive to high temperature, ethanol, and perturbation of the envelope by SDS-EDTA and certain β-lactam antibiotics. Using a series of immunocompromised mice deficient in different components of the innate and adaptive immune responses, we show that SigE plays an important role in evading the innate immune response during lethal infections of mice lacking B cells and T cells. SigE is not required, however, for colonization of the respiratory tract of immunocompetent mice. The sigE mutant is more efficiently phagocytosed and killed by peripheral blood polymorphonuclear leukocytes (PMNs) than RB50, and exhibits decreased cytotoxicity toward macrophages. These altered interactions with phagocytes could contribute to the defects observed during lethal infection.

Conclusions

Much of the work on transcriptional regulation during infection in B. bronchiseptica has focused on the BvgAS two-component system. This study reveals that the SigE regulon also mediates a discrete subset of functions associated with virulence. SigE is the first cell envelope stress-sensing system to be described in the bordetellae. In addition to its role during lethal infection of mice deficient in adaptive immunity, our results indicate that SigE is likely to be important for survival in the face of stresses encountered in the environment between hosts.

【 授权许可】

   
2012 Barchinger et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150803172109636.pdf 1576KB PDF download
Figure 6. 54KB Image download
Figure 5. 23KB Image download
Figure 4. 55KB Image download
Figure 3. 64KB Image download
Figure 2. 42KB Image download
Figure 1. 123KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]MacRitchie DM, Buelow DR, Price NL, Raivio TL: Two-component signaling and gram negative envelope stress response systems. Adv Exp Med Biol 2008, 631:80-110.
  • [2]Rowley G, Spector M, Kormanec J, Roberts M: Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. Nat Rev Microbiol 2006, 4:383-394.
  • [3]Crouch ML, Becker LA, Bang IS, Tanabe H, Ouellette AJ, Fang FC: The alternative sigma factor sigma is required for resistance of Salmonella enterica serovar Typhimurium to anti-microbial peptides. Mol Microbiol 2005, 56:789-799.
  • [4]Ernst RK, Guina T, Miller SI: Salmonella Typhimurium outer membrane remodeling: role in resistance to host innate immunity. Microb Infect 2001, 3:1327-1334.
  • [5]Jongerius I, Ram S, Rooijakkers S: Bacterial complement escape. Adv Exp Med Biol 2009, 666:32-48.
  • [6]Humphreys S, Stevenson A, Bacon A, Weinhardt AB, Roberts M: The alternative sigma factor, σE, is critically important for the virulence of Salmonella Typhimurium. Infect Immun 1999, 67:1560-1568.
  • [7]Mathur J, Waldor MK: The Vibrio cholerae ToxR-regulated porin OmpU confers resistance to antimicrobial peptides. Infect Immun 2004, 72:3577-3583.
  • [8]Raivio TL: Envelope stress responses and Gram-negative bacterial pathogenesis. Mol Microbiol 2005, 56:1119-1128.
  • [9]Arico B, Gross R, Smida J, Rappuoli R: Evolutionary relationships in the genus Bordetella. Mol Microbiol 1987, 1:301-308.
  • [10]Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, Harris DE, Holden MT, Churcher CM, Bentley SD, Mungall KL, et al.: Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 2003, 35:32-40.
  • [11]Goodnow RA: Biology of Bordetella bronchiseptica. Microbiol Rev 1980, 44:722-738.
  • [12]Mattoo S, Cherry JD: Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 2005, 18:326-382.
  • [13]Musser JM, Bemis DA, Ishikawa H, Selander RK: Clonal diversity and host distribution in Bordetella bronchiseptica. J Bacteriol 1987, 169:2793-2803.
  • [14]Mazumder SA, Cleveland KO: Bordetella bronchiseptica bacteremia in a patient with AIDS. South Med J 2010, 103:934-935.
  • [15]Madan Babu M, Teichmann SA, Aravind L: Evolutionary dynamics of prokaryotic transcriptional regulatory networks. J Mol Biol 2006, 358:614-633.
  • [16]Brickman TJ, Vanderpool CK, Armstrong SK: Heme transport contributes to in vivo fitness of Bordetella pertussis during primary infection in mice. Infect Immun 2006, 74:1741-1744.
  • [17]Conover MS, Redfern CJ, Ganguly T, Sukumar N, Sloan G, Mishra M, Deora R: BpsR modulates Bordetella biofilm formation by negatively regulating the expression of the Bps polysaccharide. J Bacteriol 2012, 194:233-242.
  • [18]Jungnitz H, West NP, Walker MJ, Chhatwal GS, Guzman CA: A second two-component regulatory system of Bordetella bronchiseptica required for bacterial resistance to oxidative stress, production of acid phosphatase, and in vivo persistence. Infect Immun 1998, 66:4640-4650.
  • [19]Vanderpool CK, Armstrong SK: Integration of environmental signals controls expression of Bordetella heme utilization genes. J Bacteriol 2004, 186:938-948.
  • [20]Zimna K, Medina E, Jungnitz H, Guzman CA: Role played by the response regulator Ris in Bordetella bronchiseptica resistance to macrophage killing. FEMS Microbiol Lett 2001, 201:177-180.
  • [21]Paget MS, Helmann JD: The sigma70 family of sigma factors. Genome Biol 2003, 4:203. BioMed Central Full Text
  • [22]Gruber TM, Gross CA: Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol 2003, 57:441-466.
  • [23]Helmann JD: The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol 2002, 46:47-110.
  • [24]Staron A, Sofia HJ, Dietrich S, Ulrich LE, Liesegang H, Mascher T: The third pillar of bacterial signal transduction: classification of the extracytoplasmic function (ECF) sigma factor protein family. Mol Microbiol 2009, 74:557-581.
  • [25]Missiakas D, Raina S: The extracytoplasmic function sigma factors: role and regulation. Mol Microbiol 1998, 28:1059-1066.
  • [26]Alba BM, Gross CA: Regulation of the Escherichia coli sigma-dependent envelope stress response. Mol Microbiol 2004, 52:613-619.
  • [27]Rhodius VA, Suh WC, Nonaka G, West J, Gross CA: Conserved and variable functions of the σE stress response in related genomes. PLoS Biol 2006, 4:e2.
  • [28]Muller C, Bang IS, Velayudhan J, Karlinsey J, Papenfort K, Vogel J, Fang FC: Acid stress activation of the σE stress response in Salmonella enterica serovar Typhimurium. Mol Microbiol 2009, 71:1228-1238.
  • [29]Testerman TL, Vazquez-Torres A, Xu Y, Jones-Carson J, Libby SJ, Fang FC: The alternative sigma factor σE controls antioxidant defences required for Salmonella virulence and stationary-phase survival. Mol Microbiol 2002, 43:771-782.
  • [30]Deretic V, Schurr MJ, Boucher JC, Martin DW: Conversion of Pseudomonas aeruginosa to mucoidy in cystic fibrosis: environmental stress and regulation of bacterial virulence by alternative sigma factors. J Bacteriol 1994, 176:2773-2780.
  • [31]Rowen DW, Deretic V: Membrane-to-cytosol redistribution of ECF sigma factor AlgU and conversion to mucoidy in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Mol Microbiol 2000, 36:314-327.
  • [32]De Las Penas A, Connolly L, Gross CA: The σE-mediated response to extracytoplasmic stress in Escherichia coli is transduced by RseA and RseB, two negative regulators of σE. Mol Microbiol 1997, 24:373-385.
  • [33]Heusipp G, Schmidt MA, Miller VL: Identification of rpoE and nadB as host responsive elements of Yersinia enterocolitica. FEMS Microbiol Lett 2003, 226:291-298.
  • [34]Mecsas J, Rouviere PE, Erickson JW, Donohue TJ, Gross CA: The activity of σE, an Escherichia coli heat-inducible sigma-factor, is modulated by expression of outer membrane proteins. Genes Dev 1993, 7:2618-2628.
  • [35]De Las Penas A, Connolly L, Gross CA: σE is an essential sigma factor in Escherichia coli. J Bacteriol 1997, 179:6862-6864.
  • [36]Flannagan RS, Valvano MA: Burkholderia cenocepacia requires RpoE for growth under stress conditions and delay of phagolysosomal fusion in macrophages. Microbiology 2008, 154:643-653.
  • [37]Yu H, Schurr MJ, Deretic V: Functional equivalence of Escherichia coli σE and Pseudomonas aeruginosa AlgU: E. coli rpoE restores mucoidy and reduces sensitivity to reactive oxygen intermediates in algU mutants of P. aeruginosa. J Bacteriol 1995, 177:3259-3268.
  • [38]Bianchi AA, Baneyx F: Hyperosmotic shock induces the σ32 and σE stress regulons of Escherichia coli. Mol Microbiol 1999, 34:1029-1038.
  • [39]Mathur J, Davis BM, Waldor MK: Antimicrobial peptides activate the Vibrio cholerae σE regulon through an OmpU-dependent signalling pathway. Mol Microbiol 2007, 63:848-858.
  • [40]Keith LM, Bender CL: AlgT (σ22) controls alginate production and tolerance to environmental stress in Pseudomonas syringae. J Bacteriol 1999, 181:7176-7184.
  • [41]Korbsrisate S, Vanaporn M, Kerdsuk P, Kespichayawattana W, Vattanaviboon P, Kiatpapan P, Lertmemongkolchai G: The Burkholderia pseudomallei RpoE (AlgU) operon is involved in environmental stress tolerance and biofilm formation. FEMS Microbiol Lett 2005, 252:243-249.
  • [42]Tomoyasu T, Mogk A, Langen H, Goloubinoff P, Bukau B: Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Mol Microbiol 2001, 40:397-413.
  • [43]Kovacikova G, Skorupski K: The alternative sigma factor σE plays an important role in intestinal survival and virulence in Vibrio cholerae. Infect Immun 2002, 70:5355-5362.
  • [44]Harvill ET, Cotter PA, Yuk MH, Miller JF: Probing the function of Bordetella bronchiseptica adenylate cyclase toxin by manipulating host immunity. Infect Immun 1999, 67:1493-1500.
  • [45]Mann PB, Elder KD, Kennett MJ, Harvill ET: Toll-like receptor 4-dependent early elicited tumor necrosis factor alpha expression is critical for innate host defense against Bordetella bronchiseptica. Infect Immun 2004, 72:6650-6658.
  • [46]Mann PB, Kennett MJ, Harvill ET: Toll-like receptor 4 is critical to innate host defense in a murine model of bordetellosis. J Infect Dis 2004, 189:833-836.
  • [47]Mann PB, Wolfe D, Latz E, Golenbock D, Preston A, Harvill ET: Comparative toll-like receptor 4-mediated innate host defense to Bordetella infection. Infect Immun 2005, 73:8144-8152.
  • [48]Burns VC, Pishko EJ, Preston A, Maskell DJ, Harvill ET: Role of Bordetella O antigen in respiratory tract infection. Infect Immun 2003, 71:86-94.
  • [49]Yuk MH, Harvill ET, Miller JF: The BvgAS virulence control system regulates type III secretion in Bordetella bronchiseptica. Mol Microbiol 1998, 28:945-959.
  • [50]Bock A, Gross R: The BvgAS two-component system of Bordetella spp.: a versatile modulator of virulence gene expression. Int J Med Microb 2001, 291:119-130.
  • [51]Cotter PA, Jones AM: Phosphorelay control of virulence gene expression in Bordetella. Trends Microbiol 2003, 11:367-373.
  • [52]Mattoo S, Foreman-Wykert AK, Cotter PA, Miller JF: Mechanisms of Bordetella pathogenesis. Front Biosci 2001, 6:E168-E186.
  • [53]Bashyam MD, Hasnain SE: The extracytoplasmic function sigma factors: role in bacterial pathogenesis. Infect Genet Evol 2004, 4:301-308.
  • [54]Gerlach G, von Wintzingerode F, Middendorf B, Gross R: Evolutionary trends in the genus Bordetella. Microb Infect 2001, 3:61-72.
  • [55]Porter JF, Parton R, Wardlaw AC: Growth and survival of Bordetella bronchiseptica in natural waters and in buffered saline without added nutrients. Appl Environ Microbiol 1991, 57:1202-1206.
  • [56]Park SD, Youn JW, Kim YJ, Lee SM, Kim Y, Lee HS: Corynebacterium glutamicum σE is involved in responses to cell surface stresses and its activity is controlled by the anti-sigma factor CseE. Microbiology 2008, 154:915-923.
  • [57]Sheehan BJ, Bosse JT, Beddek AJ, Rycroft AN, Kroll JS, Langford PR: Identification of Actinobacillus pleuropneumoniae genes important for survival during infection in its natural host. Infect Immun 2003, 71:3960-3970.
  • [58]Cotter PA, Miller JF: BvgAS-mediated signal transduction: analysis of phase-locked regulatory mutants of Bordetella bronchiseptica in a rabbit model. Infect Immun 1994, 62:3381-3390.
  • [59]Stainer DW, Scholte MJ: A simple chemically defined medium for the production of phase I Bordetella pertussis. J Gen Microbiol 1970, 63:211-220.
  • [60]Costanzo A, Ades SE: Growth phase-dependent regulation of the extracytoplasmic stress factor, σE, by guanosine 3',5'-bispyrophosphate (ppGpp). J Bacteriol 2006, 188:4627-4634.
  • [61]Costanzo A, Nicoloff H, Barchinger SE, Banta AB, Gourse RL, Ades SE: ppGpp and DksA likely regulate the activity of the extracytoplasmic stress factor σE in Escherichia coli by both direct and indirect mechanisms. Mol Microbiol 2008, 67:619-632.
  • [62]Hayden JD, Ades SE: The Extracytoplasmic stress factor, σE, is required to maintain cell envelope integrity in Escherichia coli. PLoS One 2008, 3:e1573.
  • [63]Stibitz S, Aaronson W, Monack D, Falkow S: The vir locus and phase-variation in Bordetella pertussis. Tokai J Exp Clin Med 1988, 13(Suppl):223-226.
  • [64]Preston A, Allen AG, Cadisch J, Thomas R, Stevens K, Churcher CM, Badcock KL, Parkhill J, Barrell B, Maskell DJ: Genetic basis for lipopolysaccharide O-antigen biosynthesis in bordetellae. Infect Immun 1999, 67:3763-3767.
  • [65]Rouviere PE, De Las Penas A, Mecsas J, Lu CZ, Rudd KE, Gross CA: rpoE, the gene encoding the second heat-shock sigma factor, σE, in Escherichia coli. EMBO J 1995, 14:1032-1042.
  • [66]Schaeffer LM, McCormack FX, Wu H, Weiss AA: Bordetella pertussis lipopolysaccharide resists the bactericidal effects of pulmonary surfactant protein A. J Immunol 2004, 173:1959-1965.
  • [67]Datsenko KA, Wanner BL: One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 2000, 97:6640-6645.
  • [68]Weingart CL, Broitman-Maduro G, Dean G, Newman S, Peppler M, Weiss AA: Fluorescent labels influence phagocytosis of Bordetella pertussis by human neutrophils. Infect Immun 1999, 67:4264-4267.
  • [69]Buboltz AM, Nicholson TL, Weyrich LS, Harvill ET: Role of the type III secretion system in a hypervirulent lineage of Bordetella bronchiseptica. Infect Immun 2009, 77:3969-3977.
  • [70]Stibitz S, Carbonetti NH: Hfr mapping of mutations in Bordetella pertussis that define a genetic locus involved in virulence gene regulation. J Bacteriol 1994, 176:7260-7266.
  • [71]Miller JH: Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1972.
  • [72]Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: a sequence logo generator. Genome Res 2004, 14:1188-1190.
  • [73]Goebel EM, Wolfe DN, Elder K, Stibitz S, Harvill ET: O-antigen protects Bordetella parapertussis from complement. Infect Immun 2008, 76:1774-1780.
  • [74]Rodriguez ME, Hellwig SM, Hozbor DF, Leusen J, van der Pol WL, van de Winkel JG: Fc receptor-mediated immunity against Bordetella pertussis. J Immunol 2001, 167:6545-6551.
  • [75]Rodriguez ME, Van der Pol WL, Van de Winkel JG: Flow cytometry-based phagocytosis assay for sensitive detection of opsonic activity of pneumococcal capsular polysaccharide antibodies in human sera. J Immunol Methods 2001, 252:33-44.
  • [76]Harvill ET, Preston A, Cotter PA, Allen AG, Maskell DJ, Miller JF: Multiple roles for Bordetella lipopolysaccharide molecules during respiratory tract infection. Infect Immun 2000, 68:6720-6728.
  • [77]Kirimanjeswara GS, Agosto LM, Kennet MJ, Bjornstad ON, Harvill ET: Pertussis toxin inhibits neutrophil recruitment to inhibit antibody-mediated clearance of Bordetella pertussis. J Clin Invest 2005, 115:3594-3601.
  文献评价指标  
  下载次数:74次 浏览次数:21次