BMC Medical Genomics | |
Differential expression analysis of human endogenous retroviruses based on ENCODE RNA-seq data | |
Dmitrij Frishman1  Anja Mösch2  Kerstin Haase2  | |
[1] St Petersburg State Polytechnical University, St. Petersburg 195251, Russia;Department of Genome Oriented Bioinformatics, Wissenschaftszentrum Weihenstephan, TU München, Maximus-von-Imhof-Forum 3, Freising 85354, Germany | |
关键词: Next-generation sequencing; Cancer; Gene expression; | |
Others : 1233845 DOI : 10.1186/s12920-015-0146-5 |
|
received in 2014-12-11, accepted in 2015-10-28, 发布年份 2015 | |
【 摘 要 】
Background
Human endogenous retroviruses (HERVs) are flanked by long terminal repeats (LTRs), which possess promoter activity and can therefore influence the expression of neighboring genes. HERV involvement in different types of cancer has already been thoroughly documented. However, so far there has been no systematic study of HERV expression patterns in a multitude of cell types in health and disease. In particular, the publication of the comprehensive ENCODE dataset has already facilitated many gene expression studies, but none so far focusing exclusively on HERVs.
Results
We present a comprehensive differential analysis of HERV expression based on ENCODE Tier 1 and Tier 2 RNA-seq data produced by Cold Spring Harbor Laboratories and the California Institute of Technology. This analysis was conducted for individual HERV loci and for entire HERV families in twelve different cell lines, of which six correspond to the normal condition and the other six represent cancer cell types. Although the principal component analysis revealed that the two groups of cells show distinguishable expression patterns, we were not able to link these differences to one or multiple particular HERV families. Two samples exhibit expression patterns, which are not similar to the corresponding cell lines of the other producing lab. Instead they show signs of cancer formation and expression of the pluripotency marker HERVH, despite being classified as a normal cell line and a differentiated cell, respectively.
Conclusions
Our study demonstrates that ENCODE data are generally comparable between the different contributing labs and that the analysis of HERV elements can provide novel insights into differentiation and disease state of a cell that are easily overlooked when focusing on protein-coding genes. Our findings hint at a change in HERV expression during cancerogenesis.
【 授权许可】
2015 Haase et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20151123024100928.pdf | 1373KB | download | |
Fig. 7. | 14KB | Image | download |
Fig. 6. | 60KB | Image | download |
Figure 4. | 21KB | Image | download |
Fig. 4. | 36KB | Image | download |
Fig. 3. | 33KB | Image | download |
Fig. 2. | 36KB | Image | download |
Fig. 1. | 53KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Figure 4.
Fig. 6.
Fig. 7.
【 参考文献 】
- [1]Griffiths D: Endogenous retroviruses in the human genome sequence. Genome Biology 2001, 2(6):reviews1017-reviews1017.5
- [2]Rebollo R, Romanish MT, Mager DL: Transposable elements: An abundant and natural source of regulatory sequences for host genes. Annu Rev Genet 2012, 46:21-42.
- [3]Mager DL, Medstrand P. Retroviral repeat sequences. In Encyclopedia of the Human Genome. London: Nature Publishing Group; 2003:57–63.
- [4]Mangeney M, Renard M, Schlecht-Louf G, Bouallaga I, Heidmann O, Letzelter C, et al.: Placental syncytins: Genetic disjunction between the fusogenic and immunosuppressive activity of retroviral envelope proteins. Proc Natl Acad Sci U S A 2007, 104(51):20534-20539.
- [5]Mi S, Lee X, Li X, Veldman GM, Finnerty H, Racie L, et al.: Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 2000, 403(6771):785-789.
- [6]Karlsson H, Schröder J, Bachmann S, Bottmer C, Yolken RH: HERV-W-related RNA detected in plasma from individuals with recent-onset schizophrenia or schizoaffective disorder. Mol Psychiatry 2004, 9(1):12-13.
- [7]Kolson DL, Gonzalez-Scarano F: Endogenous retroviruses and multiple sclerosis. Ann Neurol 2001, 50(4):429-430.
- [8]Buscher K, Hahn S, Hofmann M, Trefzer U, Ozel M, Sterry W, et al.: Expression of the human endogenous retrovirus-K transmembrane envelope, Rec and Np9 proteins in melanomas and melanoma cell lines. Melanoma Res 2006, 16(3):223-234.
- [9]Frank O, Verbeke C, Schwarz N, Mayer J, Fabarius A, Hehlmann R, et al.: Variable transcriptional activity of endogenous retroviruses in human breast cancer. J Virol 2008, 82(4):1808-1818.
- [10]Seifarth W, Spiess B, Zeilfelder U, Speth C, Hehlmann R, Leib-Mösch C: Assessment of retroviral activity using a universal retrovirus chip. J Virol Methods 2003, 112(1–2):79-91.
- [11]Seifarth W, Frank O, Zeilfelder U, Spiess B, Greenwood AD, Hehlmann R, et al.: Comprehensive Analysis of Human Endogenous Retrovirus Transcriptional Activity in Human Tissues with a Retrovirus-Specific Microarray. J Virol 2005, 79(1):341-352.
- [12]Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10(1):57-63.
- [13]The ENCODE Project Consortium: The ENCODE (ENCyclopedia Of DNA Elements) Project Science 2004, 306(5696):636-640.
- [14]Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al.: Landscape of transcription in human cells. Nature 2012, 489(7414):101-108.
- [15]Hart T, Komori H, LaMere S, Podshivalova K, Salomon D: Finding the active genes in deep RNA-seq gene expression studies. BMC Genomics 2013, 14(1):778. BioMed Central Full Text
- [16]Park E, Williams B, Wold BJ, Mortazavi A: RNA editing in the human ENCODE RNA-seq data. Genome Res 2012, 22(9):1626-1633.
- [17]Bánfai B, Jia H, Khatun J, Wood E, Risk B, Gundling WE, et al.: Long noncoding RNAs are rarely translated in two human cell lines. Genome Res 2012, 22(9):1646-1657.
- [18]Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al.: GENCODE: The reference human genome annotation for The ENCODE Project. Genome Res 2012, 22(9):1760-1774.
- [19]Criscione S, Zhang Y, Thompson W, Sedivy J, Neretti N: Transcriptional landscape of repetitive elements in normal and cancer human cells. BMC Genomics 2014, 15(1):583. BioMed Central Full Text
- [20]Lu X, Sachs F, Ramsay L, Jacques PE, Göke J, Bourque G, et al.: The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat Struct Mol Biol 2014, 21:423-425.
- [21]Pačes J, Pavlíček A, Pačes V: HERVd: database of human endogenous retroviruses. Nucleic Acids Res 2002, 30(1):205-206.
- [22]Pačes J, Pavlíček A, Zika R, Kapitonov VV, Jurka J, Pačes V: HERVd: the Human Endogenous RetroViruses Database: update. Nucleic Acids Res 2004, 32(suppl 1):D50.
- [23]Gao Y, Xu H, Shen Y, Wang J: Transcriptomic analysis of rice (Oryza sativa) endosperm using the RNA-Seq technique. Plant Mol Biol 2013, 81(4–5):363-378.
- [24]Ling YH, Xiang H, Li YS, Liu Y, Zhang YH, Zhang ZJ, et al.: Exploring differentially expressed genes in the ovaries of uniparous and multiparous goats using the RNA-Seq (Quantification) method. Gene 2014, 550(1):148-153.
- [25]Cordonnier A, Casella JF, Heidmann T: Isolation of novel human endogenous retrovirus-like elements with foamy virus-related pol sequence. J Virol 1995, 69(9):5890-5897.
- [26]Tönjes RR, Löwer R, Boller K, Denner J, Hasenmaier B, Kirsch H, et al.: HERV-K: the biologically most active human endogenous retrovirus family. J Acquir Immune Defic Syndr Hum Retrovirol 1996, 13(Suppl 1):S261-S267.
- [27]Hinrichs AS, Karolchik D, Baertsch R, Barber GP, Bejerano G, Clawson H, et al.: The UCSC Genome Browser Database: update 2006. Nucleic Acids Res 2006, 34(Database issue):D590-D598.
- [28]Kent W, Sugnet C, Furey T, Roskin K, Pringle T, Zahler A, et al.: The human genome browser at UCSC. Genome Res 2002, 12(6):996-1006.
- [29]Santoni F, Guerra J, Luban J: HERV-H RNA is abundant in human embryonic stem cells and a precise marker for pluripotency. Retrovirology 2012, 9(1):111. BioMed Central Full Text
- [30]Schön U, Diem O, Leitner L, Gunzburg WH, Mager DL, Salmons B, et al.: Human endogenous retroviral long terminal repeat sequences as cell type-specific promoters in retroviral vectors. J Virol 2009, 83(23):12643-12650.
- [31]Raney BJ, Dreszer TR, Barber GP, Clawson H, Fujita PA, Wang T, et al.: Track data hubs enable visualization of user-defined genome-wide annotations on the UCSC Genome Browser. Bioinformatics 2014, 30(7):1003-1005.
- [32]Rosenbloom KR, Sloan CA, Malladi VS, Dreszer TR, Learned K, Kirkup VM, et al.: ENCODE Data in the UCSC Genome Browser: year 5 update. Nucleic Acids Res 2013, 41(D1):D56-D63.
- [33]Kent WJ: BLAT-the BLAST-like alignment tool. Genome Res 2002, 12(4):656-664.
- [34]Liao Y, Smyth GK, Shi W: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30(7):923-930.
- [35]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11:R106. BioMed Central Full Text
- [36]Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al.: Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol 2004, 5:R80. BioMed Central Full Text
- [37]R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna; 2013. http://www.R-project.org
- [38]Benjamini Y, Hochberg Y: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc Ser B Methodol 1995, 57(1):289-300.
- [39]Eisenberg E, Levanon EY: Human housekeeping genes, revisited. Trends Genet 2013, 29(10):569-574.