期刊论文详细信息
BMC Genomics
High-throughput capturing and characterization of mutations in essential genes of Caenorhabditis elegans
Ann M Rose2  David L Baillie1  Robert Johnsen1  Ann Marie Davison3  Kathy Wong2  Shu-Yi Chua1  Jeffrey Shih-Chieh Chu2 
[1] Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada;Department of Medical Genetics, University of British Columbia, Vancouver, Canada;Department of Biology, Kwantlen Polytechnic University, Surrey, Canada
关键词: Cell cycle;    C. elegans;    Lethal mutation;    Balanced mutation;    Essential genes;    Mutagenesis;    EMS;    Whole genome sequencing;   
Others  :  1217238
DOI  :  10.1186/1471-2164-15-361
 received in 2013-12-05, accepted in 2014-05-06,  发布年份 2014
PDF
【 摘 要 】

Background

Essential genes are critical for the development of all organisms and are associated with many human diseases. These genes have been a difficult category to study prior to the availability of balanced lethal strains. Despite the power of targeted mutagenesis, there are limitations in identifying mutations in essential genes. In this paper, we describe the identification of coding regions for essential genes mutated using forward genetic screens in Caenorhabditis elegans. The lethal mutations described here were isolated and maintained by a wild-type allele on a rescuing duplication.

Results

We applied whole genome sequencing to identify the causative molecular lesion resulting in lethality in existing C. elegans mutant strains. These strains are balanced and can be easily maintained for subsequent characterization. Our method can be effectively used to analyze mutations in a large number of essential genes. We describe here the identification of 64 essential genes in a region of chromosome I covered by the duplication sDp2. Of these, 42 are nonsense mutations, six are splice signal mutations, one deletion, and 15 are non-synonymous mutations. Many of the essential genes in this region function in cell cycle, transcriptional regulation, and RNA processing.

Conclusions

The essential genes identified here are represented by mutant strains, many of which have more than one mutant allele. The genetic resource can be utilized to further our understanding of essential gene function and will be applicable to the study of C. elegans development, conserved cellular function, and ultimately lead to improved human health.

【 授权许可】

   
2014 Chu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150705161731458.pdf 732KB PDF download
Figure 2. 86KB Image download
Figure 1. 19KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL: The human disease network. Proc Natl Acad Sci U S A 2007, 104:8685-8690.
  • [2]Park D, Park J, Park SG, Park T, Choi SS: Analysis of human disease genes in the context of gene essentiality. Genomics 2008, 92:414-418.
  • [3]Dickerson JE, Zhu A, Robertson DL, Hentges KE: Defining the role of essential genes in human disease. PLoS One 2011, 6:e27368.
  • [4]Solimini NL, Xu Q, Mermel CH, Liang AC, Schlabach MR, Luo J, Burrows AE, Anselmo AN, Bredemeyer AL, Li MZ, Beroukhim R, Meyerson M, Elledge SJ: Recurrent hemizygous deletions in cancers may optimize proliferative potential. Science 2012, 337:104-109.
  • [5]Juhas M, Eberl L, Church GM: Essential genes as antimicrobial targets and cornerstones of synthetic biology. Trends Biotechnol 2012, 30:601-607.
  • [6]Johnsen RC, Baillie DL: Mutation. In C Elegans II. 2nd edition. Edited by Riddle DL, Blumenthal T, Meyer BJ, Priess JR. NY: Cold Spring Harbor Press; 1997.
  • [7]Ramani AK, Chuluunbaatar T, Verster AJ, Na H, Vu V, Pelte N, Wannissorn N, Jiao A, Fraser AG: The majority of animal genes are required for wild-type fitness. Cell 2012, 148:792-802.
  • [8]Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J: Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 2003, 421:231-237.
  • [9]Kemphues K: Essential Genes. [http://www.wormbook.org/chapters/www_essentialgenes/essentialgenes.html webcite]
  • [10]Yook K, Harris TW, Bieri T, Cabunoc A, Chan J, Chen WJ, Davis P, de la Cruz N, Duong A, Fang R, Ganesan U, Grove C, Howe K, Kadam S, Kishore R, Lee R, Li Y, Muller HM, Nakamura C, Nash B, Ozersky P, Paulini M, Raciti D, Rangarajan A, Schindelman G, Shi X, Schwarz EM, Ann Tuli M, Van Auken K, Wang D, et al.: WormBase 2012: more genomes, more data, new website. Nucleic Acids Res 2012, 40:D735-D741.
  • [11]Chen N, Harris TW, Antoshechkin I, Bastiani C, Bieri T, Blasiar D, Bradnam K, Canaran P, Chan J, Chen CK, Chen WJ, Cunningham F, Davis P, Kenny E, Kishore R, Lawson D, Lee R, Muller HM, Nakamura C, Pai S, Ozersky P, Petcherski A, Rogers A, Sabo A, Schwarz EM, Van Auken K, Wang Q, Durbin R, Spieth J, Sternberg PW, et al.: WormBase: a comprehensive data resource for Caenorhabditis biology and genomics. Nucleic Acids Res 2005, 33:D383-D389.
  • [12]Han M, Sternberg PW: let-60, a gene that specifies cell fates during C. elegans vulval induction, encodes a ras protein. Cell 1990, 63:921-931.
  • [13]Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, Mello CC: Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 2001, 106:23-34.
  • [14]Hill DA, Ivanovich J, Priest JR, Gurnett CA, Dehner LP, Desruisseau D, Jarzembowski JA, Wikenheiser-Brokamp KA, Suarez BK, Whelan AJ, Williams G, Bracamontes D, Messinger Y, Goodfellow PJ: DICER1 mutations in familial pleuropulmonary blastoma. Science 2009, 325:965.
  • [15]Thompson O, Edgley ML, Strasbourger P, Flibotte S, Ewing B, Adair R, Au V, Chaudhry I, Fernando L, Hutter H, Kieffer A, Lau J, Lee N, Miller A, Raymant G, Shen B, Shendure J, Taylor J, Turner EH, Hillier LW, Moerman DG, Waterston RH: The million mutation project: a new approach to genetics in Caenorhabditis elegans. Genome Res 2013, 23:1749-1762.
  • [16]C. elegans Deletion Mutant Consortium T: Large-scale screening for targeted knockouts in the Caenorhabditis elegans genome. G3 (Bethesda) 2012, 2:1415-1425.
  • [17]Moerman DG, Barstead RJ: Towards a mutation in every gene in Caenorhabditis elegans. Brief Funct Genomic Proteomic 2008, 7:195-204.
  • [18]Edgley ML, Baillie DL, Riddle DL, Rose AM: Genetic balancers. 2006. http://www.wormbook.org/chapters/www_geneticbalancers/geneticbalancers.html webcite
  • [19]Johnsen RC, Jones SJ, Rose AM: Mutational accessibility of essential genes on chromosome I(left) in Caenorhabditis elegans. Mol Gen Genet 2000, 263:239-252.
  • [20]Rose AM, Baillie DL: Genetic organization of the region around UNC-15 (I), a gene affecting paramyosin in Caenorhabditis elegans. Genetics 1980, 96:639-648.
  • [21]Sigurdson DC, Spanier GJ, Herman RK: Caenorhabditis elegans deficiency mapping. Genetics 1984, 108:331-345.
  • [22]Stewart HI, O'Neil NJ, Janke DL, Franz NW, Chamberlin HM, Howell AM, Gilchrist EJ, Ha TT, Kuervers LM, Vatcher GP, Danielson JL, Baillie DL: Lethal mutations defining 112 complementation groups in a 4.5 Mb sequenced region of Caenorhabditis elegans chromosome III. Mol Gen Genet 1998, 260:280-288.
  • [23]Clark DV, Rogalski TM, Donati LM, Baillie DL: The unc-22(IV) region of Caenorhabditis elegans: genetic analysis of lethal mutations. Genetics 1988, 119:345-353.
  • [24]Rogalski TM, Baillie DL: Genetic organization of the unc-22 IV gene and the adjacent region in Caenorhabditis elegans. Mol Gen Genet 1985, 201:409-414.
  • [25]Rogalski TM, Moerman DG, Baillie DL: Essential genes and deficiencies in the unc-22 IV region of Caenorhabditis elegans. Genetics 1982, 102:725-736.
  • [26]Clark DV, Baillie DL: Genetic analysis and complementation by germ-line transformation of lethal mutations in the unc-22 IV region of Caenorhabditis elegans. Mol Gen Genet 1992, 232:97-105.
  • [27]Johnsen RC, Baillie DL: Genetic analysis of a major segment [LGV(left)] of the genome of Caenorhabditis elegans. Genetics 1991, 129:735-752.
  • [28]Meneely PM, Herman RK: Suppression and function of X-linked lethal and sterile mutations in Caenorhabditis elegans. Genetics 1981, 97:65-84.
  • [29]Meneely PM, Herman RK: Lethals, steriles and deficiencies in a region of the X chromosome of Caenorhabditis elegans. Genetics 1979, 92:99-115.
  • [30]Chu JS, Johnsen RC, Chua SY, Tu D, Dennison M, Marra M, Jones SJ, Baillie DL, Rose AM: Allelic ratios and the mutational landscape reveal biologically significant heterozygous SNVs. Genetics 2012, 190:1225-1233.
  • [31]Sarin S, Prabhu S, O’Meara MM, Pe’er I, Hobert O: Caenorhabditis elegans mutant allele identification by whole-genome sequencing. Nat Methods 2008, 5:865-867.
  • [32]Rose AM, O’Neil NJ, Bilenky M, Butterfield YS, Malhis N, Flibotte S, Jones MR, Marra M, Baillie DL, Jones SJ: Genomic sequence of a mutant strain of Caenorhabditis elegans with an altered recombination pattern. BMC Genomics 2010, 11:131. BioMed Central Full Text
  • [33]Shen Y, Sarin S, Liu Y, Hobert O, Pe’er I: Comparing platforms for C. elegans mutant identification using high-throughput whole-genome sequencing. PLoS One 2008, 3:e4012.
  • [34]Zuryn S, Le Gras S, Jamet K, Jarriault S: A strategy for direct mapping and identification of mutations by whole-genome sequencing. Genetics 2010, 186:427-430.
  • [35]Howell AM, Gilmour SG, Mancebo RA, Rose AM: Genetic analysis of a large autosomal region in Caenorhabditis elegans by the use of a free duplication. Genet Res 1987, 49:207-213.
  • [36]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25:1754-1760.
  • [37]Rose AM, Baillie DL, Curran J: Meiotic pairing behavior of two free duplications of linkage group I in Caenorhabditis elegans. Mol Gen Genet 1984, 195:52-56.
  • [38]Flibotte S, Edgley ML, Chaudhry I, Taylor J, Neil SE, Rogula A, Zapf R, Hirst M, Butterfield Y, Jones SJ, Marra MA, Barstead RJ, Moerman DG: Whole-genome profiling of mutagenesis in Caenorhabditis elegans. Genetics 2010, 185:431-441.
  • [39]Korzelius J, The I, Ruijtenberg S, Portegijs V, Xu H, Horvitz HR, van den Heuvel S: C. elegans MCM-4 is a general DNA replication and checkpoint component with an epidermis-specific requirement for growth and viability. Dev Biol 2011, 350:358-369.
  • [40]Lye RJ, Wilson RK, Waterston RH: Genomic structure of a cytoplasmic dynein heavy chain gene from the nematode Caenorhabditis elegans. Cell Motil Cytoskeleton 1995, 32:26-36.
  • [41]O’Rourke SM, Dorfman MD, Carter JC, Bowerman B: Dynein modifiers in C. elegans: light chains suppress conditional heavy chain mutants. PLoS Genet 2007, 3:e128.
  • [42]Gil-Krzewska AJ, Farber E, Buttner EA, Hunter CP: Regulators of the actin cytoskeleton mediate lethality in a Caenorhabditis elegans dhc-1 mutant. Mol Biol Cell 2010, 21:2707-2720.
  • [43]Wissmann A, Ingles J, McGhee JD, Mains PE: Caenorhabditis elegans LET-502 is related to Rho-binding kinases and human myotonic dystrophy kinase and interacts genetically with a homolog of the regulatory subunit of smooth muscle myosin phosphatase to affect cell shape. Genes Dev 1997, 11:409-422.
  • [44]Long X, Spycher C, Han ZS, Rose AM, Muller F, Avruch J: TOR deficiency in C. elegans causes developmental arrest and intestinal atrophy by inhibition of mRNA translation. Curr Biol 2002, 12:1448-1461.
  • [45]Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Even PC, Cervera P, Le Bouc Y: IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 2003, 421:182-187.
  • [46]Woollard A, Hodgkin J: Stu-7/air-2 is a C. elegans aurora homologue essential for chromosome segregation during embryonic and post-embryonic development. Mech Dev 1999, 82:95-108.
  • [47]Roggo L, Bernard V, Kovacs AL, Rose AM, Savoy F, Zetka M, Wymann MP, Muller F: Membrane transport in Caenorhabditis elegans: an essential role for VPS34 at the nuclear membrane. EMBO J 2002, 21:1673-1683.
  • [48]Amin NM, Shi H, Liu J: The FoxF/FoxC factor LET-381 directly regulates both cell fate specification and cell differentiation in C. elegans mesoderm development. Development 2010, 137:1451-1460.
  • [49]McDowall JS, Rose A: Alignment of the genetic and physical maps in the dpy-5 bli-4 (I) region of C. elegans by the serial cosmid rescue of lethal mutations. Mol Gen Genet 1997, 255:78-95.
  • [50]Zhao Z, Hashiguchi A, Hu J, Sakiyama Y, Okamoto Y, Tokunaga S, Zhu L, Shen H, Takashima H: Alanyl-tRNA synthetase mutation in a family with dominant distal hereditary motor neuropathy. Neurology 2012, 78:1644-1649.
  • [51]Schapira AH, Mann VM, Cooper JM, Dexter D, Daniel SE, Jenner P, Clark JB, Marsden CD: Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 1990, 55:2142-2145.
  • [52]Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, Conroy J, Magalhaes TR, Correia C, Abrahams BS, Almeida J, Bacchelli E, Bader GD, Bailey AJ, Baird G, Battaglia A, Berney T, Bolshakova N, Bolte S, Bolton PF, Bourgeron T, Brennan S, Brian J, Bryson SE, Carson AR, Casallo G, Casey J, Chung BH, Cochrane L, Corsello C, et al.: Functional impact of global rare copy number variation in autism spectrum disorders. Nature 2010, 466:368-372.
  • [53]Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, Shago M, Moessner R, Pinto D, Ren Y, Thiruvahindrapduram B, Fiebig A, Schreiber S, Friedman J, Ketelaars CE, Vos YJ, Ficicioglu C, Kirkpatrick S, Nicolson R, Sloman L, Summers A, Gibbons CA, Teebi A, Chitayat D, Weksberg R, Thompson A, Vardy C, Crosbie V, Luscombe S, Baatjes R, et al.: Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 2008, 82:477-488.
  • [54]Noor A, Whibley A, Marshall CR, Gianakopoulos PJ, Piton A, Carson AR, Orlic-Milacic M, Lionel AC, Sato D, Pinto D, Drmic I, Noakes C, Senman L, Zhang X, Mo R, Gauthier J, Crosbie J, Pagnamenta AT, Munson J, Estes AM, Fiebig A, Franke A, Schreiber S, Stewart AF, Roberts R, McPherson R, Guter SJ, Cook EH Jr, Dawson G, Schellenberg GD, et al.: Disruption at the PTCHD1 locus on Xp22.11 in autism spectrum disorder and intellectual disability. Sci Transl Med 2010, 2:49ra68.
  • [55]Liu RY, Diao CF, Zhang Y, Wu N, Wan HY, Nong XY, Liu M, Tang H: miR-371-5p down-regulates pre mRNA processing factor 4 homolog B (PRPF4B) and facilitates the G1/S transition in human hepatocellular carcinoma cells. Cancer Lett 2013, 335:351-360.
  • [56]McDowall JS, Rose AM: Genetic analysis of sterile mutants in the dpy-5 unc-13 (I) genomic region of Caenorhabditis elegans. Mol Gen Genet 1997, 255:60-77.
  • [57]Shaye DD, Greenwald I: OrthoList: a compendium of C. elegans genes with human orthologs. PLoS One 2011, 6:e20085.
  • [58]Kitagawa R, Rose AM: Components of the spindle-assembly checkpoint are essential in Caenorhabditis elegans. Nat Cell Biol 1999, 1:514-521.
  • [59]Maddox PS, Hyndman F, Monen J, Oegema K, Desai A: Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin. J Cell Biol 2007, 176:757-763.
  • [60]Kaitna S, Pasierbek P, Jantsch M, Loidl J, Glotzer M: The aurora B kinase AIR-2 regulates kinetochores during mitosis and is required for separation of homologous Chromosomes during meiosis. Curr Biol 2002, 12:798-812.
  • [61]Rogers E, Bishop JD, Waddle JA, Schumacher JM, Lin R: The aurora kinase AIR-2 functions in the release of chromosome cohesion in Caenorhabditis elegans meiosis. J Cell Biol 2002, 157:219-229.
  • [62]Moore LL, Stanvitch G, Roth MB, Rosen D: HCP-4/CENP-C promotes the prophase timing of centromere resolution by enabling the centromere association of HCP-6 in Caenorhabditis elegans. Mol Cell Biol 2005, 25:2583-2592.
  • [63]Shakes DC, Sadler PL, Schumacher JM, Abdolrasulnia M, Golden A: Developmental defects observed in hypomorphic anaphase-promoting complex mutants are linked to cell cycle abnormalities. Development 2003, 130:1605-1620.
  • [64]Shen Q, Zheng X, McNutt MA, Guang L, Sun Y, Wang J, Gong Y, Hou L, Zhang B: NAT10, a nucleolar protein, localizes to the midbody and regulates cytokinesis and acetylation of microtubules. Exp Cell Res 2009, 315:1653-1667.
  • [65]Schmidt DJ, Rose DJ, Saxton WM, Strome S: Functional analysis of cytoplasmic dynein heavy chain in Caenorhabditis elegans with fast-acting temperature-sensitive mutations. Mol Biol Cell 2005, 16:1200-1212.
  • [66]Bruder MB, Mogro-Wilson C, Kerins GJ: A survey assessing the presence of “medical home” for adults with disabilities in Connecticut. Conn Med 2010, 74:341-348.
  • [67]Mantina P, MacDonald L, Kulaga A, Zhao L, Hansen D: A mutation in teg-4, which encodes a protein homologous to the SAP130 pre-mRNA splicing factor, disrupts the balance between proliferation and differentiation in the C. elegans germ line. Mech Dev 2009, 126:417-429.
  • [68]Contrino S, Smith RN, Butano D, Carr A, Hu F, Lyne R, Rutherford K, Kalderimis A, Sullivan J, Carbon S, Kephart ET, Lloyd P, Stinson EO, Washington NL, Perry MD, Ruzanov P, Zha Z, Lewis SE, Stein LD, Micklem G: modMine: flexible access to modENCODE data. Nucleic Acids Res 2012, 40:D1082-D1088.
  • [69]Gerstein MB, Lu ZJ, Van Nostrand EL, Cheng C, Arshinoff BI, Liu T, Yip KY, Robilotto R, Rechtsteiner A, Ikegami K, Alves P, Chateigner A, Perry M, Morris M, Auerbach RK, Feng X, Leng J, Vielle A, Niu W, Rhrissorrakrai K, Agarwal A, Alexander RP, Barber G, Brdlik CM, Brennan J, Brouillet JJ, Carr A, Cheung MS, Clawson H, Contrino S, et al.: Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 2010, 330:1775-1787.
  • [70]Sulston JE, Schierenberg E, White JG, Thomson JN: The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 1983, 100:64-119.
  • [71]Austin J, Kimble J: glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell 1987, 51:589-599.
  • [72]Green RA, Kao HL, Audhya A, Arur S, Mayers JR, Fridolfsson HN, Schulman M, Schloissnig S, Niessen S, Laband K, Wang S, Starr DA, Hyman AA, Schedl T, Desai A, Piano F, Gunsalus KC, Oegema K: A high-resolution C. elegans essential gene network based on phenotypic profiling of a complex tissue. Cell 2011, 145:470-482.
  • [73]Sonnichsen B, Koski LB, Walsh A, Marschall P, Neumann B, Brehm M, Alleaume AM, Artelt J, Bettencourt P, Cassin E, Hewitson M, Holz C, Khan M, Lazik S, Martin C, Nitzsche B, Ruer M, Stamford J, Winzi M, Heinkel R, Roder M, Finell J, Hantsch H, Jones SJ, Jones M, Piano F, Gunsalus KC, Oegema K, Gonczy P, Coulson A, et al.: Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 2005, 434:462-469.
  • [74]Pauli F, Liu Y, Kim YA, Chen PJ, Kim SK: Chromosomal clustering and GATA transcriptional regulation of intestine-expressed genes in C. elegans. Development 2006, 133:287-295.
  • [75]Reinke V, Gil IS, Ward S, Kazmer K: Genome-wide germline-enriched and sex-biased expression profiles in Caenorhabditis elegans. Development 2004, 131:311-323.
  • [76]Brenner S: The genetics of Caenorhabditis elegans. Genetics 1974, 77:71-94.
  • [77]McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA: The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010, 20:1297-1303.
  • [78]Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding L, Wilson RK: VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 2012, 22:568-576.
  • [79]Vergara IA, Frech C, Chen N: CooVar: Co-occurring variant analyzer. BMC Res Notes 2012, 5:615. BioMed Central Full Text
  • [80]Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG: Primer3–new capabilities and interfaces. Nucleic Acids Res 2012, 40:e115.
  • [81]Koressaar T, Remm M: Enhancements and modifications of primer design program Primer3. Bioinformatics 2007, 23:1289-1291.
  • [82]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23:2947-2948.
  • [83]Ostlund G, Schmitt T, Forslund K, Kostler T, Messina DN, Roopra S, Frings O, Sonnhammer EL: InParanoid 7: new algorithms and tools for eukaryotic orthology analysis. Nucleic Acids Res 2010, 38:D196-D203.
  • [84]Chen F, Mackey AJ, Stoeckert CJ Jr, Roos DS: OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res 2006, 34:D363-D368.
  • [85]Vilella AJ, Severin J, Ureta-Vidal A, Heng L, Durbin R, Birney E: EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Res 2009, 19:327-335.
  • [86]Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21:3674-3676.
  文献评价指标  
  下载次数:4次 浏览次数:7次