期刊论文详细信息
BMC Evolutionary Biology
The dynamic proliferation of CanSINEs mirrors the complex evolution of Feliforms
Jill Pecon-Slattery3  Stephen J O’Brien4  Warren E Johnson3  Diana LE Johnson1  Kathryn B Walters-Conte2 
[1] Department of Biological Sciences, The George Washington University, 2036 G St, Washington, DC 20009, USA;Department of Biology, American University, 101 Hurst Hall 4440 Massachusetts Ave, Washington, DC 20016, USA;Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA 22630, USA;Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, 41 A, Sredniy Avenue St., Petersburg 199034, Russia
关键词: Felidae;    Feliformia;    Adaptation;    transposable elements;    Speciation;    Carnivora;    SINEs;    Incomplete lineage sorting;   
Others  :  855205
DOI  :  10.1186/1471-2148-14-137
 received in 2014-02-02, accepted in 2014-06-11,  发布年份 2014
PDF
【 摘 要 】

Background

Repetitive short interspersed elements (SINEs) are retrotransposons ubiquitous in mammalian genomes and are highly informative markers to identify species and phylogenetic associations. Of these, SINEs unique to the order Carnivora (CanSINEs) yield novel insights on genome evolution in domestic dogs and cats, but less is known about their role in related carnivores. In particular, genome-wide assessment of CanSINE evolution has yet to be completed across the Feliformia (cat-like) suborder of Carnivora. Within Feliformia, the cat family Felidae is composed of 37 species and numerous subspecies organized into eight monophyletic lineages that likely arose 10 million years ago. Using the Felidae family as a reference phylogeny, along with representative taxa from other families of Feliformia, the origin, proliferation and evolution of CanSINEs within the suborder were assessed.

Results

We identified 93 novel intergenic CanSINE loci in Feliformia. Sequence analyses separated Feliform CanSINEs into two subfamilies, each characterized by distinct RNA polymerase binding motifs and phylogenetic associations. Subfamily I CanSINEs arose early within Feliformia but are no longer under active proliferation. Subfamily II loci are more recent, exclusive to Felidae and show evidence for adaptation to extant RNA polymerase activity. Further, presence/absence distributions of CanSINE loci are largely congruent with taxonomic expectations within Feliformia and the less resolved nodes in the Felidae reference phylogeny present equally ambiguous CanSINE data. SINEs are thought to be nearly impervious to excision from the genome. However, we observed a nearly complete excision of a CanSINEs locus in puma (Puma concolor). In addition, we found that CanSINE proliferation in Felidae frequently targeted existing CanSINE loci for insertion sites, resulting in tandem arrays.

Conclusions

We demonstrate the existence of at least two SINE families within the Feliformia suborder, one of which is actively involved in insertional mutagenesis. We find SINEs are powerful markers of speciation and conclude that the few inconsistencies with expected patterns of speciation likely represent incomplete lineage sorting, species hybridization and SINE-mediated genome rearrangement.

【 授权许可】

   
2014 Walters-Conte et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140722031423796.pdf 3740KB PDF download
44KB Image download
115KB Image download
40KB Image download
80KB Image download
111KB Image download
19KB Image download
23KB Image download
【 图 表 】

【 参考文献 】
  • [1]Vassetzky NS, Kramerov DA: SINEBase: a database and tool for SINE analysis. Nucleic Acids Res 2013, 41(Database issue):D83-89.
  • [2]Ohshima K, Okada N: Generality of the tRNA origin of short interspersed repetitive elements (SINEs): characterization of three different tRNA-derived retroposons in the octopus. J Mol Biol 1994, 243(1):25-37.
  • [3]Coltman DW, Wright JM: Can SINEs: a family of tRNA-derived retroposons specific to the superfamily Canoidea. Nucl Acids Res 1994, 22(14):2726-2730.
  • [4]Churakov G, Smit A, Brosius J, Schmitz J: A novel abundant family of retroposed elements (DAS-SINEs) in the nine-banded armadillo (Dasypus novemcinctus). Mol Biol Evol 2005, 22:886-893.
  • [5]Kajikawa M, Okada N: LINEs mobilize SINEs in the eel through a shared 3' sequence. Cell 2002, 111(3):433-444.
  • [6]Cordaux R, Batzer M: The impact of retrotransposons on human genome evolution. Nat Rev Genet 2009, 10:691-703.
  • [7]Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, Clamp M, Chang JL, Kulbokas EJ, Zody MC 3rd, Mauceli E, Xie X, Breen M, Wayne RK, Ostrander EA, Ponting CP, Galibert F, Smith DR, DeJong PJ, Kirkness E, Alvarez P, Biagi T, Brockman W, Butler J, Chin CW, Cook A, Cuff J, Daly MJ, DeCaprio D, Gnerre S, et al.: Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 2005, 438(7069):803-819.
  • [8]Pontius J, Mullikin J, Smith D, Lindblad-Toh K, Gnerre S, Clamp M, Chang J, Stephens R, Neelam B, Volfovsky N, Schaffer A, Agarwala R, Narfstrom K, Murphy W, Giger U, Roca A, Antunes A, Menotti-Raymond M, Yuhki N, Pecon-Slattery J, Johnson W: Initial sequence and comparative analysis of the cat genome. Genome Res 2007, 17(11):1675-1689.
  • [9]Jurka J, Kapitonov V, Kohany O, Jurka MV: Repetitive sequences in complex genomes: structure and evolution. Annu Rev Genomics Hum Genet 2007, 8:241-259.
  • [10]Cho YS, Hu L, Hou H, Lee H, Xu J, Kwon S, Oh S, Kim H-M, Jho S, Kim S, Shin Y-A, Kim BC, Kim H, Kim C-u, Luo S-J, Johnson WE, Koepfli K-P, Schmidt-K√ɬºntzel A, Turner JA, Marker L, Harper C, Miller SM, Jacobs W, Bertola LD, Kim TH, Lee S, Zhou Q, Jung H-J, Xu X, Gadhvi P, et al.: The tiger genome and comparative analysis with lion and snow leopard genomes. Nat Commun 2013, 4:2433. doi: 10.1038/ncomms3433.
  • [11]Liu G, Alkan C, Jiang L, Zhao S, Eichler EE: Comparative analysis of Alu repeats in primate genomes. Genome Res 2009, 19:876-885.
  • [12]Salem AH, Ray DA, Batzer MA: Identity by descent and DNA sequence variation of human SINE and LINE elements. Cytogenet Genome Res 2005, 108:63-72.
  • [13]Zhao F, Qi J, Schuster SC: Tracking the past: interspersed repeats in an extinct Afrotherian mammal, Mammuthus primigenius. Genome Res 2009, 19:1384-1392.
  • [14]Wang J, Wang A, Han Z, Zhang Z, Li F, Li X: Characterization of three novel SINE families with unusual features in Helicoverpa armigera. PLOS One 2012, 7(2):e31355.
  • [15]Buckley PT, Lee MT, Sui J-Y, Miyashiro KY, Bell TJ, Fisher SA, Kim J, Eberwine J: Cytoplasmic intron sequence-retaining transcripts can be dedritically targeted via ID element retrotransposons. Neuron 2011, 69:877-884.
  • [16]Zhou Y, Zheng JB, Gu X, Li W, Saunders GF: A novel Pax-6 binding site in rodent B1 repetitive elements: coevolution between developmental regulation and repeated elements? Gene 2000, 245(2):319-328.
  • [17]Hasler J, Strub K: Survey and summary- Alu elements as regulators of gene expression. Nucl Acids Res 2006, 34:5491-5497.
  • [18]Krull M, Brosius J, Schmitz J: Alu-SINE exonization: en route to protein-coding function. Mol Biol Evol 2005, 22(8):1702-1711.
  • [19]Singer SS, Mannel DN, Hehlgans T, Brosius J, Schmitz J: From "junk" to gene: curriculum vitae of a primate receptor isoform gene. J Mol Biol 2004, 341(4):883-886.
  • [20]Batzer MA, Deininger P: Alu repeats and human genomic diversity. Nat Rev Genet 2002, 3:370-379.
  • [21]Callinan P, Wang J, Herke S, Garber R, Liang P, Batzer M: Alu retrotransposition-mediated deletion. J Mol Biol 2005, 348(4):791-800.
  • [22]Deininger P, Batzer M: Alu repeats and human disease. Mol Genet Metab 1999, 67(3):183-193.
  • [23]van de Lagemaat LN, Gagnier L, Medstrand P, Mager DL: Genomic deletions and precise removal of transposable elements mediated by short identical DNA segments in primates. Genome Res 2005, 15:1243-1249.
  • [24]Krull M, Petrusma M, Makalowski W, Brosius J, Schmitz J: Functional persistence of exonized mammalian-wide interspersed repeat elements (MIRs). Genome Res 2007, 17(8):1139-1145.
  • [25]Lin L, Shen S, Tye A, Cai J, Jiang P, Davidson B, Xing Y: Diverse splicing patterns of exonized Alu elements in human tissues. PLoS Genet 2008, 4:e10000225.
  • [26]Nishihara H, Smit AFA, Okada N: Functional noncoding sequences derived from SINEs in the mammalian genome. Genome Res 2006, 16(7):864-874.
  • [27]Lunyak VV, Prefontaine GG, Nunez E, Cramer T, Ju B-G, Ohgi KA, Hutt K, Roy R, Garcia-Diaz A, Zhu X, Yung Y, Montoliu L, Glass CK, Rosenfeld MG: Developmentally regulated activation of a SINE B2 repeat as a domain boundary in organogenesis. Science 2007, 317(5835):248-251.
  • [28]Goldman A, Capoano CA, Gonzalez-Lopez E, Geisinger A: Identifier (ID) elements are not preferentially located to brain-specific genes: High ID element representation in other tissue-specific- and housekeeping genes of the rat. Gene 2014, 533(1):72-77.
  • [29]Ponicsan SL, Kugel JF, Goodrich JA: Genomic gems: SINE RNAs regulate mRNA production. Curr Opin Genet Dev 2010, 20(2):149-155.
  • [30]Wang W, Kirkness EF: Short interspersed elements (SINEs) are a major source of canine genomic diversity. Genome Res 2005, 15:1798-1808.
  • [31]Clark LA, Wahl JM, Rees CA, Murphy KE: Retrotransposon insertion in SILV is responsible for merle patterning of the domestic dog. PNAS 2006, 103(5):1376-1381.
  • [32]Hu L-J, Laporte J, Kioschis P, Heyberger S, Kretz C, Poustka A, Mandel J-L, Dahl N: X-linked myotubular myopathy: refinement of the gene to a 280-kb region with new and highly informative microsatellite markers. Hum Genet 1996, 98(2):178-181.
  • [33]Laporte J, Hu LJ, Kretz C, Mandel JL, Kioschis P, Coy JF, Klauck SM, Poustka A, Dahl N: A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet 1996, 13(2):175-182.
  • [34]Parker HG, VonHoldt B, Quignon P, Margulies E, Shao S, Mosher D, Spady T, Elkaloun A, Michele C, Jones PG, Maslen CL, Acland GM, Sutter N, Kuroki K, Bustamante C, Wayne R, Ostrander EA: An expressed Fgf4 retrogene is associated with breed-defining chondrodyplasia in domestic dogs. Science 2009, 325(5943):995-998.
  • [35]Sutter N, Bustamante C, Chase K, Gray M, Zhao K, Lan Z, Padhukasahasram B, Karlins E, Davis S, Jones PG, Quignon P, JOhnson GS, Parker HG, Fretwell N, Mosher D, Lawler DF, Satyaraj E, Nordborg M, Lark KG, Wayne RK, Ostrander E: A single IGF1 allele is a major determinant of small size in dogs. Science 2007, 316(5821):112-115.
  • [36]Goldstein O, Kukekova AV, Aguirre GD, Acland GM: Exonic SINE insertion in STK38L causes canine early retinal degeneration (erd). Genomics 2010, 96(6):362-368.
  • [37]Nakanishi A, Kobayashi N, Suzuki-Hirano A, Nishihara H, Sasaki T, Hirakawa M, Sumiyama K, Shimogori T, Okada N: A SINE-derived element constitutes a unique modular enhancer for mammalian diencephalic Fgf8. PLoS One 2012, 7(8):e43785.
  • [38]Nikaido M, Matsuno F, Hamilton H, Brownell RL Jr, Cao Y, Ding W, Zuoyan Z, Shedlock AM, Fordyce RE, Hasegawa M, Okada N: Retroposon analysis of major cetacean lineages: The monophyly of toothed whales and the paraphyly of river dolphins. PNAS 2001, 98(13):7384-7389.
  • [39]Lopez-Giraldez F, Andres O, Domingo-Roura X, Bosch M: Analyses of carnivore microsatellites and their intimate association with tRNA-derived SINEs. BMC Genomics 2006, 7:269.
  • [40]Schröder C, Bleidorn C, Hartmann S, Tiedemann R: Occurrence of Can-SINEs and intron sequence evolution supports robust phylogeny of pinniped carnivores and their terrestrial relatives. Gene 2009, 448(2):221-226.
  • [41]Yu L, Zhang Y-p: Evolutionary implications of multiple SINE insertions in an intronic region from diverse mammals. Mamm Genome 2005, 16(9):651-660.
  • [42]Yu L, Zhang Y-p: Phylogenetic studies of pantherine cats (Felidae) based on multiple genes, with novel application of nuclear β-fibrinogen intron 7 to carnivores. Mol Phylogenet Evol 2005, 35(2):483-495.
  • [43]Meyer TJ, McLain AT, Oldenburg JM, Faulk C, Bourgeois MG, Conlin EM, Mootnick AR, de Jong PJ, Roos C, Carbone L, Batzer MA: An Alu-based phylogeny of gibbons (hylobatidae). Molecular biology and evolution 2012, 29(11):3441-3450.
  • [44]McLain AT, Meyer TJ, Faulk C, Herke SW, Oldenburg JM, Bourgeois MG, Abshire CF, Roos C, Batzer MA: An alu-based phylogeny of lemurs (infraorder: Lemuriformes). PLOS One 2012, 7(8):e44035.
  • [45]Farwick A, Jordan U, Fuellen G, Huchon D, Catzeflis F, Brosius J, Schmitz J: Automated scanning for phylogenetically informative transposed elements in rodents. Syst Biol 2006, 55(6):936-948.
  • [46]Steppan S, Adkins R, Anderson J: Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Syst Biol 2004, 53(4):533-553.
  • [47]Moller-Krull M, Delsuc F, Churakov G, Marker C, Superina M, Brosius J, Douzery E, Schmitz J: Retroposed Elements and Their Flanking Regions Resolve the Evolutionary History of Xenarthran Mammals (Armadillos, Anteaters, and Sloths). Mol Biol Evol 2007, 24(11):2573-2482.
  • [48]Gu W, Ray DA, Walker JA, Barnes EW, Gentles AJ, Samollow PB, Jurka J, Batzer MA, Pollock DD: SINEs, evolution and genome structure in the opossum. Gene 2007, 396(1):46-58.
  • [49]Munemasa M, Nikaido M, Nishihara H, Donnellan S, Austin CC, Okada N: Newly discovered young CORE-SINEs in marsupial genomes. Gene 2008, 407(1–2):176-185.
  • [50]Nishihara H, Satta Y, Nikaido M, Thewissen JGM, Stanhope M, Okada N: Retrotransposon analysis of Afrotherian phylogeny. Mol Biol Evol 2005, 9:1823-1833.
  • [51]Lum JK, Nikaido M, Shimamura M, Hidetoshi S, Shedlock AM, Okada N, Hasegawa M: Consistency of SINE insertion topology and flanking sequence tree: quantifying relationships among Cetartiodactyls. Mol Biol Evol 2000, 17(10):1417-1424.
  • [52]Ray DA, Xing J, Salem AH, Batzer MA: SINEs of a nearly perfect character. Syst Biol 2006, 55(6):928-935.
  • [53]Pecon-Slattery J, Wilkerson AJ, Murphy WJ, O'Brien SJ: Phylogenetic assessment of introns and SINEs within the Y chromosome using the cat family Felidae as a species tree. Mol Biol Evol 2004, 21(12):2299-2309.
  • [54]Cantrell MA, Filanoski BJ, Ingermann AR, Olsson K, DiLuglio N, Lister Z, Wichman HA: An ancient retrovirus-like element contains hot spots for SINE Insertion. Genetics 2001, 158:769-777.
  • [55]Jurka J: Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. PNAS 1997, 94:1872-1877.
  • [56]Jurka J: Repeats in genomic DNA: mining and meaning. Current Opinion in Structural Biology 1998, 8:333-337.
  • [57]Jurka J, Klonowski P: Integration of retroposable elements in mammals: selection of target sites. J Mol Evol 1996, 43:685-689.
  • [58]Yu L, Luan P-T, Jin W, Ryder OA, Chemnick LG, Davis HA, Zhang Y-p: Phylogenetic Utility of Nuclear Introns in Interfamilial Relationships of Caniformia (Order Carnivora). Syst Biol 2011, 60(2):175-187.
  • [59]Churakov G, Kreigs J, Baertsch R, Zemann A, Brosius J, Schmitz J: Mosaic retrotransposon insertion patterns in placental mammals. Genome Res 2009, 19:868-875.
  • [60]Eizirik E, Murphy W, Koepfli K, Johnson W, Dragoo J, Wayne R, O'Brien SJ: Pattern and timing of diversification of the mammalian order Carnivora inferred from multiple nuclear gene sequences. Mol Phylogenet Evol 2010, 56(1):49-63.
  • [61]Wilson DE, Reeder DM: Mammal Species of the World. In A Taxonomic and Geographic Reference. 3rd edition. Baltimore, Maryland: Johns Hopkins University Press; 2005.
  • [62]Lavrentieva MV, Rivkin MI, Shilov AG, Kobetz ML, Rogozin IB, Serov OL: B2-like repetitive sequence from the X chromosome of the American mink (Mustela vison). Mamm Genome 1991, 1(3):165-170.
  • [63]Minnick MF, Stillwell LC, Heineman JM, Stiegler GL: A highly repetitive DNA sequence possibly unique to canids. Gene 1992, 110(2):235-238.
  • [64]Pecon-Slattery J, Murphy WJ, O'Brien SJ: Patterns of diversity among SINE elements isolated from three Y-chromosome genes in carnivores. Mol Biol Evol 2000, 17(5):825-829.
  • [65]Vassetzky NS, Kramerov DA: CAN—a pan-carnivore SINE family. Mamm Genome 2002, 13(1):50-57.
  • [66]Johnson WE, Eizirik E, Pecon-Slattery J, Murphy WJ, Antunes A, Teeling E, O'Brien SJ: The late Miocene radiation of modern Felidae: a genetic assessment. Science 2006, 311(5757):73-77.
  • [67]Borodulina OR, Kramerov DA: PCR-based approach to SINE isolation: Simple and complex SINEs. Gene 2005, 349:197-205.
  • [68]Jurka J: Evolutionary impact of human Alu repetitive elements Current Opinion in Genetics and Development. 2004, 14(6):603-608.
  • [69]Gentles A, Kohany O, Jurka J: Evolutionary diversity and potential recombinogenic role of integration targets of non-LTR retrotransposons. Mol Biol Evol 2005, 22:1983-1991.
  • [70]Smit A, Hubley R, Green P: Repeat Masker Website and Server. In: http://www.repeatmasker.org/. 1996-2010
  • [71]Cordaux R, Hedges DJ, Batzer M: Retrotransposition of Alu elements: how many sources? Trends Genet 2004, 20(10):464-467.
  • [72]Ohshima K, Okada N: SINEs and LINEs: symbionts of eukaryotic genomes with a common tail. Cytogenet Genome Res 2005, 110(1–4):475-490.
  • [73]Weiner AM: SINEs and LINEs: the art of biting the hand that feeds you. Curr Opin Cell Biol 2002, 14(IS - 3):343-350.
  • [74]Borodulina OR, Kramerov DA: Transcripts synthesized by RNA polymerase III can be polyadenylated in an AAUAAA-dependent manner. Rna 2008, 14(9):1865-1873.
  • [75]Ray DA: SINEs of progress: Mobile element applications to molecular ecology. Mol Ecol 2007, 16:19-33.
  • [76]Kosushkin SA, Grechko VV: Molecular genetic relationships and some issues of systematics of rock lizards of the genus Darevskia (Squamata: Lacertidae) based on locus analysis of SINE-type repeats (Squam1). Russian Journal of Genetics 2013, 49(9):857-869.
  • [77]Avise J, Robinson T: Hemiplasy: a new term in the lexicon of phylogenetics. Syst Biol 2008, 57:503-507.
  • [78]Agnarsson I, Kunter M, May-Collado L: Dog, cats and kin: A molecular species-level phylogeny of Carnivora. Mol Phylogenet Evol 2010, 54(3):726-745.
  • [79]Wesley-Hunt G, Flynn J: Phylogeny of the carnivora: Basal relationships among the carnivoramorphans, and assessment of the position of the 'Miacoidea' relative to carnivora. Journal of Systematic Palaeontology 2005, 3(1):1-28.
  • [80]Yu L, Li Q-w, Ryder O, Zhang Y-p: Phylogenetic relationships within mammalian order Carnivora indicated by sequences of two nuclear DNA genes. Mol Phylogenet Evol 2004, 33:694-705.
  • [81]Terai Y, Takahashi K, Nishida M, Sato T, Okada N: Using SINEs to probe ancient explosive speciation: “Hidden” radiation of African cichlids? Mol Biol Evol 2003, 20(6):924-930.
  • [82]Johnson WE, Pecon-Slattery J, Eizirik E, Kim J-H, Menotti-Raymond M, Bonacic C, Cambre R, Crawshaw P, Nunes A, Seuanez HN, Moreira MAM, Seymour KL, Simon F, Swanson W, O'Brien SJ: Disparate phylogeographic patterns of molecular genetic variation in four closely related South American small cat species. Mol Ecol 1999, 8:S79-S94.
  • [83]Johnson WE, Godoy JA, Palomares F, Delibes M, Fernandes M, Revilla E: O'Brien aSJ: Phylogenetic and phylogeographic analysis of Iberian lynx populations. J Hered 2004, 95(1):19-28.
  • [84]Luo S, Johnson WE, Martelli P, Antunes A, Smith JLD, O'Brien SJ: Phylogenetic partitions of Asian felids reveal significant Indochinese-Sundaic transition. Mol Biol Evol 2010. In Press
  • [85]Perelman PL, Graphodatsky AS, Serdukova NA, Nie W, Alkalaeva EZ, Fu B, Robinson TJ, Yang F: Karyotypic conservatism in the suborder Feliformia (Order Carnivora). Cytogenet Genome Res 2005, 108:348-354.
  • [86]Hallstrom B, Janke A: Mammalian evolution may not be strictly bifurcating. Mol Biol Evol 2010, 27(12):2804-2816.
  • [87]Scientists GKCo: Genome 10K: A Proposal to Obtain Whole-Genome Sequence for 10 000 Vertebrate Species. J Hered 2009, 100(6):659-674.
  • [88]Johnson WE, Culver M, Iriate JA, Eizirik E, Seymour KL, O'Brien S: Tracking the evolution of the elusive Andean mountain cat (Oreailurus jacobita) from mitochondrial DNA. J Hered 1998, 89(3):227-232.
  • [89]Luo S-J: Comparative phylogeography of sympatric wild cats: Implications for biogeography and conservation in Asian biodiversity hotspots. In University of Minnesota- Doctoral Dissertation. Minneapolis: Doctoral Dissertation-University of Minnesota; 2006.
  • [90]Nishihara H, Maruyama S, Okada N: Retrotransposon analysis and recent geological data suggest near-simultaneous divergence of the three superorders of mammals. PNAS 2009, 106:5235-5240.
  • [91]Pontius JU, O'Brien SJ: Genome annotation resource fields—GARFIELD: a genome browser for Felis catus. J Hered 2007, 98(5):386-389.
  • [92]Mei L, Ding X, Tsang SY, Pun FW, Ng SK, Yang J, Zhao C, Li D, Wan W, Yu CH, Tan TC, Poon WS, Leung GK, Ng HK, Zhang L, Xue H: AluScan: a method for genome-wide scanning of sequence and structure variations in the human genome. BMC Genomics 2011, 12:564.
  • [93]Walker JA, Kilroy GE, Xing J, Shewale J, Sinha SK, Batzer MA: Human DNA quantitation using Alu element-based polymerase chain reaction. Analytical Biochemistry 2003, 315:122-128.
  • [94]Drummond A, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Thierer T, Wilson A: Geneious v4.7. 2009. http://www.geneious.com webcite
  • [95]Katoh K, Asimenos G, Toh H: Multiple alignment of DNA sequences and MAFFT. Methods Mol Biol 2009, 537:39-64.
  • [96]Drummond A, Ashton B, Buxton S, Cheung M, Cooper A, Heled J, Kearse M, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A: Geneious v5.1. 2010. In: http://www.geneious.com webcite
  • [97]Posada D, Buckley TR: Model selection and averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 2004, 53:793-818.
  • [98]Posada D, Crandall KA: Selecting the best-fit model of nucleotide substitution. Syst Biol 2001, 50:580-601.
  • [99]Swofford D: PAUP*. Phylogenetic analysis using parsimony (*and other methods) version 4. Sinauer Associates 2003.
  • [100]Bazinet A, Cummings M: The lattice project: a grid research and production environment combining multiple grid computing models. In: Distributed & Grid Computing- Science Made Transparent for Everyone Principles, Applications and Supporting Communities 2008, 2-13.
  • [101]Zwickl D: Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under maximum likelihood criterion. In The University of Texas at Austin - Doctoral Dissertation. Austin: Doctoral Dissertation-The University of Texas at Austin; 2006.
  • [102]Walters-Conte KB, Johnson DLE, Johnson WE, O'Brien SJ, Pecon-Slattery J: The Dynamic Proliferation of CanSINEs Mirrors the Complex Evolution of Feliforms. TreeBase 2014. http://purl.org/phylo/treebase/phylows/study/TB2:S15822 webcite
  文献评价指标  
  下载次数:69次 浏览次数:17次