期刊论文详细信息
BMC Developmental Biology
Multiple modes of proepicardial cell migration require heartbeat
Warren Heideman1  Richard E Peterson1  Kevin A Lanham2  Monica S Yue1  Peter Hofsteen3  Jessica S Plavicki1 
[1]Molecular and Environmental Toxicology Center, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705-2222, USA
[2]Department of Pharmaceutical Sciences, 777 Highland Avenue, Madison, WI 53705-2222, USA
[3]University of Washington, Institute for Stem Cell and Regenerative Medicine, Center for Cardiovascular Biology, 850 Republican St., Box 357470, Seattle, WA 9810, USA
关键词: tcf21;    Zebrafish;    Heart;    Proepicardial;    Proepicardium;    Epicardial;    Epicardium;   
Others  :  820718
DOI  :  10.1186/1471-213X-14-18
 received in 2013-12-10, accepted in 2014-05-06,  发布年份 2014
PDF
【 摘 要 】

Background

The outermost layer of the vertebrate heart, the epicardium, forms from a cluster of progenitor cells termed the proepicardium (PE). PE cells migrate onto the myocardium to give rise to the epicardium. Impaired epicardial development has been associated with defects in valve development, cardiomyocyte proliferation and alignment, cardiac conduction system maturation and adult heart regeneration. Zebrafish are an excellent model for studying cardiac development and regeneration; however, little is known about how the zebrafish epicardium forms.

Results

We report that PE migration occurs through multiple mechanisms and that the zebrafish epicardium is composed of a heterogeneous population of cells. Heterogeneity is first observed within the PE and persists through epicardium formation. Using in vivo imaging, histology and confocal microscopy, we show that PE cells migrate through a cellular bridge that forms between the pericardial mesothelium and the heart. We also observed the formation of PE aggregates on the pericardial surface, which were released into the pericardial cavity. It was previously reported that heartbeat-induced pericardiac fluid advections are necessary for PE cluster formation and subsequent epicardium development. We manipulated heartbeat genetically and pharmacologically and found that PE clusters clearly form in the absence of heartbeat. However, when heartbeat was inhibited the PE failed to migrate to the myocardium and the epicardium did not form. We isolated and cultured hearts with only a few epicardial progenitor cells and found a complete epicardial layer formed. However, pharmacologically inhibiting contraction in culture prevented epicardium formation. Furthermore, we isolated control and silent heart (sih) morpholino (MO) injected hearts prior to epicardium formation (60 hpf) and co-cultured these hearts with “donor” hearts that had an epicardium forming (108 hpf). Epicardial cells from donor hearts migrated on to control but not sih MO injected hearts.

Conclusions

Epicardial cells stem from a heterogeneous population of progenitors, suggesting that the progenitors in the PE have distinct identities. PE cells attach to the heart via a cellular bridge and free-floating cell clusters. Pericardiac fluid advections are not necessary for the development of the PE cluster, however heartbeat is required for epicardium formation. Epicardium formation can occur in culture without normal hydrodynamic and hemodynamic forces, but not without contraction.

【 授权许可】

   
2014 Plavicki et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140712053359160.pdf 5013KB PDF download
Figure 9. 309KB Image download
Figure 8. 103KB Image download
Figure 7. 85KB Image download
Figure 6. 57KB Image download
Figure 5. 237KB Image download
Figure 4. 277KB Image download
Figure 3. 184KB Image download
Figure 2. 253KB Image download
Figure 1. 286KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Serluca FC: Development of the proepicardial organ in the zebrafish. Dev Biol 2008, 315(1):18-27.
  • [2]Bakkers J: Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res 2011, 91(2):279-288.
  • [3]Vincent SD, Buckingham ME: How to make a heart: the origin and regulation of cardiac progenitor cells. Curr Top Dev Biol 2010, 90:1-41.
  • [4]Srivastava D, Olson EN: A genetic blueprint for cardiac development. Nature 2000, 407(6801):221-226.
  • [5]Olson EN: Gene regulatory networks in the evolution and development of the heart. Science 2006, 313(5795):1922-1927.
  • [6]Buckingham M, Meilhac S, Zaffran S: Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 2005, 6(11):826-835.
  • [7]Martin-Puig S, Wang Z, Chien KR: Lives of a heart cell: tracing the origins of cardiac progenitors. Cell Stem Cell 2008, 2(4):320-331.
  • [8]Gittenberger-de Groot AC, Winter EM, Bartelings MM, Jose Goumans M, Deruiter MC, Poelmann RE: The arterial and cardiac epicardium in development, disease and repair. Differentiation 2012, 84(1):41-53.
  • [9]Smart N, Riley PR: The epicardium as a candidate for heart regeneration. Future Cardiol 2012, 8(1):53-69.
  • [10]Smart N, Dube KN, Riley PR: Epicardial progenitor cells in cardiac regeneration and neovascularisation. Vascul Pharmacol 2012, 58(3):164-173.
  • [11]Riley PR: An epicardial floor plan for building and rebuilding the mammalian heart. Curr Top Dev Biol 2012, 100:233-251.
  • [12]Lie-Venema H, van den Akker NM, Bax NA, Winter EM, Maas S, Kekarainen T, Hoeben RC, DeRuiter MC, Poelmann RE, Gittenberger-de Groot AC: Origin, fate, and function of epicardium-derived cells (EPDCs) in normal and abnormal cardiac development. Sci World J 2007, 7:1777-1798.
  • [13]Nahirney PC, Mikawa T, Fischman DA: Evidence for an extracellular matrix bridge guiding proepicardial cell migration to the myocardium of chick embryos. Dev Dyn 2003, 227(4):511-523.
  • [14]Sakaguchi T, Kikuchi Y, Kuroiwa A, Takeda H, Stainier DY: The yolk syncytial layer regulates myocardial migration by influencing extracellular matrix assembly in zebrafish. Development 2006, 133(20):4063-4072.
  • [15]Manner J: The development of pericardial villi in the chick embryo. Anat Embryol (Berl) 1992, 186(4):379-385.
  • [16]Manner J: Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primordium. Anat Rec 1999, 255(2):212-226.
  • [17]Hiruma T, Hirakow R: Epicardial formation in embryonic chick heart: computer-aided reconstruction, scanning, and transmission electron microscopic studies. Am J Anat 1989, 184(2):129-138.
  • [18]Jahr M, Schlueter J, Brand T, Manner J: Development of the proepicardium in Xenopus laevis. Dev Dyn 2008, 237(10):3088-3096.
  • [19]Fransen ME, Lemanski LF: Epicardial development in the axolotl, Ambystoma mexicanum. Anat Rec 1990, 226(2):228-236.
  • [20]Komiyama M, Ito K, Shimada Y: Origin and development of the epicardium in the mouse embryo. Anat Embryol 1987, 176(2):183-189.
  • [21]Rodgers LS, Lalani S, Runyan RB, Camenisch TD: Differential growth and multicellular villi direct proepicardial translocation to the developing mouse heart. Dev Dyn 2008, 237(1):145-152.
  • [22]Hu N, Sedmera D, Yost HJ, Clark EB: Structure and function of the developing zebrafish heart. Anat Rec 2000, 260(2):148-157.
  • [23]Peralta M, Steed E, Harlepp S, González-Rosa JM, Monduc F, Ariza-Cosano A, Cortés A, Rayón T, Gómez-Skarmeta JL, Zapata A, Vermot J, Mercader N: Heartbeat-driven pericardiac fluid forces contribute to epicardium morphogenesis. Curr Biol 2013. [Epub ahead of print]
  • [24]Katz TC, Singh MK, Degenhardt K, Rivera-Feliciano J, Johnson RL, Epstein JA, Tabin CJ: Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Dev Cell 2012, 22(3):639-650.
  • [25]Cai CL, Martin JC, Sun Y, Cui L, Wang L, Ouyang K, Yang L, Bu L, Liang X, Zhang X, Stallcup WB, Denton CP, McCulloch A, Chen J, Evans SM: A myocardial lineage derives from Tbx18 epicardial cells. Nature 2008, 454(7200):104-108.
  • [26]Liu J, Stainier DY: Tbx5 and Bmp signaling are essential for proepicardium specification in zebrafish. Circ Res 2010, 106(12):1818-1828.
  • [27]Bartman T, Walsh EC, Wen KK, McKane M, Ren J, Alexander J, Rubenstein PA, Stainier DY: Early myocardial function affects endocardial cushion development in zebrafish. PLoS Biol 2004, 2(5):E129.
  • [28]Schulte I, Schlueter J, Abu-Issa R, Brand T, Manner J: Morphological and molecular left-right asymmetries in the development of the proepicardium: a comparative analysis on mouse and chick embryos. Dev Dyn 2007, 236(3):684-695.
  • [29]Tandon P, Miteva YV, Kuchenbrod LM, Cristea IM, Conlon FL: Tcf21 regulates the specification and maturation of proepicardial cells. Development 2013, 140(11):2409-2421.
  • [30]Pombal MA, Carmona R, Megias M, Ruiz A, Perez-Pomares JM, Munoz-Chapuli R: Epicardial development in lamprey supports an evolutionary origin of the vertebrate epicardium from an ancestral pronephric external glomerulus. Evol Dev 2008, 10(2):210-216.
  • [31]Icardo JM, Guerrero A, Duran AC, Colvee E, Domezain A, Sans-Coma V: The development of the epicardium in the sturgeon Acipenser naccarii. Anat Rec (Hoboken) 2009, 292(10):1593-1601.
  • [32]Nesbitt T, Lemley A, Davis J, Yost MJ, Goodwin RL, Potts JD: Epicardial development in the rat: a new perspective. Microsc Microanal 2006, 12(5):390-398.
  • [33]Dettman RW, Denetclaw W Jr, Ordahl CP, Bristow J: Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol 1998, 193(2):169-181.
  • [34]Mikawa T, Gourdie RG: Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol 1996, 174(2):221-232.
  • [35]Gittenberger-de Groot AC, Vrancken Peeters MP, Mentink MM, Gourdie RG, Poelmann RE: Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res 1998, 82(10):1043-1052.
  • [36]Zhou B, Ma Q, Rajagopal S, Wu SM, Domian I, Rivera-Feliciano J, Jiang D, von Gise A, Ikeda S, Chien KR, Pu WT: Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 2008, 454(7200):109-113.
  • [37]Zhou B, Pu WT: More than a cover: epicardium as a novel source of cardiac progenitor cells. Regen Med 2008, 3(5):633-635.
  • [38]Limana F, Zacheo A, Mocini D, Mangoni A, Borsellino G, Diamantini A, De Mori R, Battistini L, Vigna E, Santini M, Loiaconi V, Pompilio G, Germani A, Capogrossi MC: Identification of myocardial and vascular precursor cells in human and mouse epicardium. Circ Res 2007, 101(12):1255-1265.
  • [39]Merki E, Zamora M, Raya A, Kawakami Y, Wang J, Zhang X, Burch J, Kubalak SW, Kaliman P, Izpisua Belmonte JC, Chien KR, Ruiz-Lozano P: Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation. Proc Natl Acad Sci U S A 2005, 102(51):18455-18460.
  • [40]Kikuchi K, Gupta V, Wang J, Holdway JE, Wills AA, Fang Y, Poss KD: tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 2011, 138(14):2895-2902.
  • [41]Ishii Y, Garriock RJ, Navetta AM, Coughlin LE, Mikawa T: BMP signals promote proepicardial protrusion necessary for recruitment of coronary vessel and epicardial progenitors to the heart. Dev Cell 2010, 19(2):307-316.
  • [42]Hirose T, Karasawa M, Sugitani Y, Fujisawa M, Akimoto K, Ohno S, Noda T: PAR3 is essential for cyst-mediated epicardial development by establishing apical cortical domains. Development 2006, 133(7):1389-1398.
  • [43]Westerfield M: The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio). 3rd edition. 1995.
  • [44]Poon KL, Liebling M, Kondrychyn I, Garcia-Lecea M, Korzh V: Zebrafish cardiac enhancer trap lines: new tools for in vivo studies of cardiovascular development and disease. Dev Dyn 2010, 239(3):914-926.
  • [45]Burns CG, Milan DJ, Grande EJ, Rottbauer W, MacRae CA, Fishman MC: High-throughput assay for small molecules that modulate zebrafish embryonic heart rate. Nat Chem Biol 2005, 1(5):263-264.
  • [46]Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA, Gayyed MF, Anders RA, Maitra A, Pan D: Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 2007, 130(6):1120-1133.
  • [47]Plavicki J, Hofsteen P, Peterson RE, Heideman W: Dioxin inhibits zebrafish epicardium and proepicardium development. Toxicol Sci 2013, 131(2):558-567.
  • [48]Antkiewicz DS, Peterson RE, Heideman W: Blocking expression of AHR2 and ARNT1 in zebrafish larvae protects against cardiac toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci 2006, 94(1):175-182.
  • [49]Prasch AL, Teraoka H, Carney SA, Dong W, Hiraga T, Stegeman JJ, Heideman W, Peterson RE: Aryl hydrocarbon receptor 2 mediates 2,3,7,8-tetrachlorodibenzo-p-dioxin developmental toxicity in zebrafish. Toxicol Sci 2003, 76(1):138-150.
  • [50]Burns CG, MacRae CA: Purification of hearts from zebrafish embryos. Biotechniques 2006, 40(3):274-278. passim
  文献评价指标  
  下载次数:37次 浏览次数:23次