期刊论文详细信息
BMC Genomics
Gene rearrangements in gekkonid mitochondrial genomes with shuffling, loss, and reassignment of tRNA genes
Yasuyuki Hashiguchi1  Chiemi Yamada2  Saaya Miura2  Yoshinori Kumazawa2 
[1] Department of Biology, Osaka Medical College, Takatsuki, Japan;Department of Information and Biological Sciences and Research Center for Biological Diversity, Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya 467-8501, Japan
关键词: Pseudogene;    tRNA;    Gene rearrangement;    Mitochondrial DNA;    Gecko;   
Others  :  1128427
DOI  :  10.1186/1471-2164-15-930
 received in 2014-06-08, accepted in 2014-10-13,  发布年份 2014
PDF
【 摘 要 】

Background

Vertebrate mitochondrial genomes (mitogenomes) are 16–18 kbp double-stranded circular DNAs that encode a set of 37 genes. The arrangement of these genes and the major noncoding region is relatively conserved through evolution although gene rearrangements have been described for diverse lineages. The tandem duplication-random loss model has been invoked to explain the mechanisms of most mitochondrial gene rearrangements. Previously reported mitogenomic sequences for geckos rarely included gene rearrangements, which we explore in the present study.

Results

We determined seven new mitogenomic sequences from Gekkonidae using a high-throughput sequencing method. The Tropiocolotes tripolitanus mitogenome involves a tandem duplication of the gene block: tRNAArg, NADH dehydrogenase subunit 4L, and NADH dehydrogenase subunit 4. One of the duplicate copies for each protein-coding gene may be pseudogenized. A duplicate copy of the tRNAArg gene appears to have been converted to a tRNAGln gene by a C to T base substitution at the second anticodon position, although this gene may not be fully functional in protein synthesis. The Stenodactylus petrii mitogenome includes several tandem duplications of tRNALeu genes, as well as a translocation of the tRNAAla gene and a putative origin of light-strand replication within a tRNA gene cluster. Finally, the Uroplatus fimbriatus and U. ebenaui mitogenomes feature the apparent loss of the tRNAGlu gene from its original position. Uroplatus fimbriatus appears to retain a translocated tRNAGlu gene adjacent to the 5’ end of the major noncoding region.

Conclusions

The present study describes several new mitochondrial gene rearrangements from Gekkonidae. The loss and reassignment of tRNA genes is not very common in vertebrate mitogenomes and our findings raise new questions as to how missing tRNAs are supplied and if the reassigned tRNA gene is fully functional. These new examples of mitochondrial gene rearrangements in geckos should broaden our understanding of the evolution of mitochondrial gene arrangements.

【 授权许可】

   
2014 Kumazawa et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150223074731638.pdf 3439KB PDF download
Figure 6. 90KB Image download
Figure 5. 78KB Image download
Figure 4. 119KB Image download
Figure 3. 45KB Image download
Figure 2. 48KB Image download
Figure 1. 64KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Wolstenholme DR: Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 1992, 141:173-216.
  • [2]Boore JL: Animal mitochondrial genomes. Nucleic Acids Res 1999, 27:1767-1780.
  • [3]Bernt M, Bleidorn C, Braband A, Dambach J, Donath A, Fritzsch G, Golombek A, Hadrys H, Juhling F, Meusemann K, Middendorf M, Misof B, Perseke M, Podsiadlowski L, Von Reumont B, Schierwater B, Schlegel M, Schrodl M, Simon S, Stadler PF, Stoger I, Struck TH: A comprehensive analysis of bilaterian mitochondrial genomes and phylogeny. Mol Phylogenet Evol 2013, 69:352-364.
  • [4]Anderson S, Bankier AT, Barrell BG, De Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG: Sequence and organization of the human mitochondrial genome. Nature 1981, 290:457-465.
  • [5]Clayton DA: Transcription and replication of animal mitochondrial DNAs. Int Rev Cytol 1992, 141:217-232.
  • [6]Scarpulla RC: Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 2008, 88:611-638.
  • [7]Okajima Y, Kumazawa Y: Mitochondrial genomes of acrodont lizards: timing of gene rearrangements and phylogenetic and biogeographic implications. BMC Evol Biol 2010, 10:141. BioMed Central Full Text
  • [8]Kurabayashi A, Sumida M: Afrobatrachian mitochondrial genomes: genome reorganization, gene rearrangement mechanisms, and evolutionary trends of duplicated and rearranged genes. BMC Genomics 2013, 14:633. BioMed Central Full Text
  • [9]Kumazawa Y, Ota H, Nishida M, Ozawa T: Gene rearrangements in snake mitochondrial genomes: highly concerted evolution of control-region-like sequences duplicated and inserted into a tRNA gene cluster. Mol Biol Evol 1996, 13:1242-1254.
  • [10]Amer SAM, Kumazawa Y: The mitochondrial genome of the lizard Calotes versicolor and a novel gene inversion in South Asian draconine agamids. Mol Biol Evol 2007, 24:1330-1339.
  • [11]Uetz P, Hosek J: The Reptile Database. URL: http://www.reptile-database.org webcite
  • [12]Fujita MK, Boore JL, Moritz C: Multiple origins and rapid evolution of duplicated mitochondrial genes in parthenogenetic geckos (Heteronotia binoei; Squamata, Gekkonidae). Mol Biol Evol 2007, 24:2775-2786.
  • [13]Jonniaux P, Hashiguchi Y, Kumazawa Y: Mitochondrial genomes of two African geckos of genus Hemitheconyx (Squamata: Eublepharidae). Mitochondrial DNA 2012, 23:278-279.
  • [14]Zhang P, Liang D, Mao RL, Hillis DM, Wake DB, Cannatella DC: Efficient sequencing of Anuran mtDNAs and a mitogenomic exploration of the phylogeny and evolution of frogs. Mol Biol Evol 2013, 30:1899-1915.
  • [15]Macey JR, Larson A, Ananjeva NB, Fang Z, Papenfuss TJ: Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Mol Biol Evol 1997, 14:91-104.
  • [16]Amer SAM, Kumazawa Y: Mitochondrial genome of Pogona vitticepes (Reptilia; Agamidae): control region duplication and the origin of Australasian agamids. Gene 2005, 346:249-256.
  • [17]Okajima Y, Kumazawa Y: Mitogenomic perspectives into iguanid phylogeny and biogeography: Gondwanan vicariance for the origin of Madagascan oplurines. Gene 2009, 441:28-35.
  • [18]Fonseca MM, Harris DJ: Relationship between mitochondrial gene rearrangements and stability of the origin of light strand replication. Genet Mol Biol 2008, 30:566-574.
  • [19]Kurabayashi A, Sumida M, Yonekawa H, Glaw F, Vences M, Hasegawa M: Phylogeny, recombination, and mechanisms of stepwise mitochondrial genome reorganization in mantellid frogs from Madagascar. Mol Biol Evol 2008, 25:874-891.
  • [20]Xu W, Jameson D, Tang B, Higgs PG: The relationship between the rate of molecular evolution and the rate of genome rearrangement in animal mitochondrial genomes. J Mol Evol 2006, 63:375-392.
  • [21]Sbisá E, Tanzariello F, Reyes A, Pesole G, Saccone C: Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene 1997, 205:125-140.
  • [22]Kumazawa Y, Nishida M: Sequence evolution of mitochondrial tRNA genes and deep-branch animal phylogenetics. J Mol Evol 1993, 37:380-398.
  • [23]Fujita MK, Papenfuss TJ: Molecular systematics of Stenodactylus (Gekkonidae), an Afro-Arabian gecko species complex. Mol Phylogenet Evol 2011, 58:71-75.
  • [24]Gamble T, Greenbaum E, Jackman TR, Russell AP, Bauer AM: Repeated origin and loss of adhesive toepads in geckos. PLoS One 2012, 7:e39429.
  • [25]Metallinou M, Arnold EN, Crochet PA, Geniez P, Brito JC, Lymberakis P, Baha El Din S, Sindaco R, Robinson M, Carranza S: Conquering the Sahara and Arabian deserts: systematics and biogeography of Stenodactylus geckos (Reptilia: Gekkonidae). BMC Evol Biol 2012, 12:258. BioMed Central Full Text
  • [26]Bauer AM, Masroor R, Titus-McQuillan J, Heinicke MP, Daza JD, Jackman TR: A preliminary phylogeny of the Palearctic naked-toed geckos (Reptilia: Squamata: Gekkonidae) with taxonomic implications. Zootaxa 2013, 3599:301-324.
  • [27]Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997, 25:4876-4882.
  • [28]Wyman SK, Jansen RK, Boore JL: Automatic annnotation of organellar genomes with DOGMA. Bioinformatics 2004, 20:3252-3255.
  • [29]Moritz C, Dowling TE, Brown WM: Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Ann Rev Ecol Syst 1987, 18:269-292.
  • [30]Selosse M-A, Albert B, Godelle B: Reducing the genome size of organelles favours gene transfer to the nucleus. Trends Ecol Evol 2001, 16:135-141.
  • [31]Levinson G, Gutman GA: Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 1987, 4:203-221.
  • [32]Glaw F, Kosuch J, Henkel F-W, Sound P, Böhme W: Genetic and morphological variation of the leaf-tailed gecko Uroplatus fimbriatus from Madagascar, with description of a new giant species. Salamandra 2006, 42:129-144.
  • [33]Greenbaum E, Bauer AM, Jackman TR, Vences M, Glaw F: A phylogeny of the enigmatic Madagascan geckos of the genus Uroplatus (Squamata: Gekkonidae). Zootaxa 2007, 1493:41-51.
  • [34]Schön A, Kannangara CG, Gough S, Söll D: Protein biosynthesis in organelles requires misaminoacylation of tRNA. Nature 1988, 331:187-190.
  • [35]Frechin M, Duchene AM, Becker HD: Translating organellar glutamine codons: a case by case scenario? RNA Biol 2009, 6:31-34.
  • [36]Sheppard K, Yuan J, Hohn MJ, Jester B, Devine KM, Söll D: From one amino acid to another: tRNA-dependent amino acid biosynthesis. Nucleic Acids Res 2008, 36:1813-1825.
  • [37]Nureki O, O’Donoghue P, Watanabe N, Ohmori A, Oshikane H, Araiso Y, Sheppard K, Söll D, Ishitani R: Structure of an archaeal non-discriminating glutamyl-tRNA synthetase: a missing link in the evolution of Gln-tRNAGln formations. Nucleic Acids Res 2010, 38:7286-7297.
  • [38]Ito T, Yokoyama S: Two enzymes bound to one transfer RNA assume alternative conformations for consecutive reactions. Nature 2010, 467:612-616.
  • [39]Kumazawa Y, Himeno H, Miura K, Watanabe K: Unilateral aminoacylation specificity between bovine mitochondria and eubacteria. J Biochem 1991, 109:421-427.
  • [40]Wakita K, Watanabe Y, Yokogawa T, Kumazawa Y, Nakamura S, Ueda T, Watanabe K, Nishikawa K: Higher-order structure of bovine mitochondrial tRNAPhe lacking the 'conserved' GG and TΨCG sequences as inferred by enzymatic and chemical probing. Nucleic Acids Res 1994, 22:347-353.
  • [41]Nagao A, Suzuki T, Katoh T, Sakaguchi Y: Biogenesis of glutaminyl-mt tRNAGln in human mitochondria. Proc Natl Acad Sci U S A 2009, 106:16209-16214.
  • [42]Janke A, Feldmaier-Fuchs G, Thomas WK, Von Haeseler A, Pääbo S: The marsupial mitochondrial genome and the evolution of placental mammals. Genetics 1994, 137:243-256.
  • [43]Dörner M, Altmann M, Pääbo S, Mörl M: Evidence for import of a lysyl-tRNA into marsupial mitochondria. Mol Biol Cell 2001, 12:2688-2698.
  • [44]Schneider A: Mitochondrial tRNA import and its consequences for mitochondrial translation. Ann Rev Biochem 2011, 80:1033-1053.
  • [45]Suyama Y: The origins of mitochondrial ribonucleic acids in Tetrahymena pyriformis. Biochemistry 1967, 6:2829-2839.
  • [46]Rusconi CP, Cech TR: The anticodon is the signal sequence for mitochondrial import of glutamine tRNA in Tetrahymena. Genes Dev 1996, 10:2870-2880.
  • [47]Osawa S, Jukes TH, Watanabe K, Muto A: Recent evidence for evolution of the genetic code. Microbiol Rev 1992, 56:229-264.
  • [48]Satoh TP, Sato Y, Masuyama N, Miya M, Nishida M: Transfer RNA gene arrangement and codon usage in vertebrate mitochondrial genomes: a new insight into gene order conservation. BMC Genomics 2010, 11:479. BioMed Central Full Text
  • [49]Asakawa S, Kumazawa Y, Araki T, Himeno H, Miura K, Watanabe K: Strand-specific nucleotide composition bias in echinoderm and vertebrate mitochondrial genomes. J Mol Evol 1991, 32:511-520.
  • [50]Watanabe K, Yokobori S: tRNA modification and genetic code variations in animal mitochondria. J Nucleic Acids 2011, 2011:623095.
  • [51]Yokobori SI, Pääbo S: tRNA editing in metazoans. Nature 1995, 377:490.
  • [52]Chateigner-Boutin AL, Small I: Organellar RNA editing. Wiley Interdiscip Rev RNA 2011, 2:493-506.
  • [53]Börner GV, Mörl M, Janke A, Pääbo S: RNA editing changes the identity of a mitochondrial tRNA in marsupials. EMBO J 1996, 15:5949-5957.
  • [54]Mabuchi K, Miya M, Satoh TP, Westneat MW, Nishida M: Gene rearrangements and evolution of tRNA pseudogenes in the mitochondrial genome of the parrotfish (Teleostei: Perciformes: Scaridae). J Mol Evol 2004, 59:287-297.
  • [55]Cantatore P, Gadaleta MN, Roberti M, Saccone C, Wilson AC: Duplication and remoulding of tRNA genes during the evolutionary rearrangement of mitochondrial genomes. Nature 1987, 329:853-855.
  • [56]De Angelis MM, Wang DG, Hawkins TL: Solid-phase immobilization for the isolation of PCR products. Nucleic Acids Res 1995, 23:4742-4743.
  • [57]Meyer M, Stenzel U, Hofreiter M: Parallel tagged sequencing on the 454 platform. Nat Protoc 2008, 3:267-278.
  • [58]Kumazawa Y, Endo H: Mitochondrial genome of the Komodo dragon: efficient sequencing method with reptile-oriented primers and novel gene rearrangements. DNA Res 2004, 11:115-125.
  • [59]Jonniaux P: Getmitogenome: a software for manipulating animal mitochondrial gene sequences. 2012. URL: http://www.nsc.nagoya-cu.ac.jp/~kuma/lab_homepage/getmitogenome.html webcite
  • [60]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  文献评价指标  
  下载次数:16次 浏览次数:8次