期刊论文详细信息
BMC Genomics
Genome-wide analysis of the ATP-binding cassette (ABC) transporter gene family in sea lamprey and Japanese lamprey
Weiming Li4  Titus Brown2  Camille Scott1  Chu-Yin Yeh4  Yu-Wen Chung-Davidson4  Jianfeng Ren3 
[1] Department of Computer Science and Engineering, Michigan State University, East Lansing 48824, MI, USA;Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing 48824, MI, USA;Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China;Department of Fisheries and Wildlife, Michigan State University, East Lansing 48824, MI, USA
关键词: Gene expression;    RNA-Seq;    Lampreys;    Chordates;    Evolution;    ABC transporter;   
Others  :  1211968
DOI  :  10.1186/s12864-015-1677-z
 received in 2015-01-23, accepted in 2015-06-01,  发布年份 2015
PDF
【 摘 要 】

Background

Lampreys are extant representatives of the jawless vertebrate lineage that diverged from jawed vertebrates around 500 million years ago. Lamprey genomes contain information crucial for understanding the evolution of gene families in vertebrates. The ATP-binding cassette (ABC) gene family is found from prokaryotes to eukaryotes. The recent availability of two lamprey draft genomes from sea lamprey Petromyzon marinus and Japanese lamprey Lethenteron japonicum presents an opportunity to infer early evolutionary events of ABC genes in vertebrates.

Results

We conducted a genome-wide survey of the ABC gene family in two lamprey draft genomes. A total of 37 ABC transporters were identified and classified into seven subfamilies; namely seven ABCA genes, 10 ABCB genes, 10 ABCC genes, three ABCD genes, one ABCE gene, three ABCF genes, and three ABCG genes. The ABCA subfamily has expanded from three genes in sea squirts, seven and nine in lampreys and zebrafish, to 13 and 16 in human and mouse. Conversely, the multiple copies of ABCB1-, ABCG1-, and ABCG2-like genes found in sea squirts have contracted in the other species examined. ABCB2 and ABCB3 seem to be new additions in gnathostomes (not in sea squirts or lampreys), which coincides with the emergence of the gnathostome-specific adaptive immune system. All the genes in the ABCD, ABCE and ABCF subfamilies were conserved and had undergone limited duplication and loss events. In the sea lamprey transcriptomes, the ABCE and ABCF gene subfamilies were ubiquitously and highly expressed in all tissues while the members in other gene subfamilies were differentially expressed.

Conclusions

Thirteen more lamprey ABC transporter genes were identified in this study compared with a previous study. By concatenating the same gene sequences from the two lampreys, more full length sequences were obtained, which significantly improved both the assignment of gene names and the phylogenetic trees compared with a previous analysis using partial sequences. The ABC gene subfamilies in chordates have undergone obvious expansion or contraction. The ABCA subfamily showed the highest gene expansion rate during chordate evolution. The evolution of ABC transporters in lampreys requires further evaluation because the present results are based on a draft genome.

【 授权许可】

   
2015 Ren et al.

【 预 览 】
附件列表
Files Size Format View
20150612022733972.pdf 2918KB PDF download
Fig. 7. 119KB Image download
Fig. 6. 62KB Image download
Fig. 5. 34KB Image download
Fig. 4. 33KB Image download
Fig. 3. 80KB Image download
Fig. 2. 68KB Image download
Fig. 1. 76KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

【 参考文献 】
  • [1]Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 2001; 11(7):1156-66.
  • [2]Hollenstein K, Dawson RJ, Locher KP. Structure and mechanism of ABC transporter proteins. Curr Opin Struct Biol. 2007; 17(4):412-8.
  • [3]Locher KP. Review. Structure and mechanism of ATP-binding cassette transporters. Philos Trans R Soc Lond B Biol Sci. 2009; 364(1514):239-45.
  • [4]Davidson AL, Maloney PC. ABC transporters: how small machines do a big job. Trends Microbiol. 2007; 15(10):448-55.
  • [5]Rees DC, Johnson E, Lewinson O. ABC transporters: the power to change. Nat Rev Mol Cell Biol. 2009; 10(3):218-27.
  • [6]Popovic M, Zaja R, Loncar J, Smital T. A novel ABC transporter: the first insight into zebrafish (Danio rerio) ABCH1. Mar Environ Res. 2010; 69 Suppl:S11-3.
  • [7]Dean M, Annilo T. Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates. Annu Rev Genomics Hum Genet. 2005; 6:123-42.
  • [8]Vasiliou V, Vasiliou K, Nebert DW. Human ATP-binding cassette (ABC) transporter family. Hum Genomics. 2009; 3(3):281-90. BioMed Central Full Text
  • [9]Pisarev AV, Skabkin MA, Pisareva VP, Skabkina OV, Rakotondrafara AM, Hentze MW, Hellen CU, Pestova TV. The role of ABCE1 in eukaryotic posttermination ribosomal recycling. Mol Cell. 2010; 37(2):196-210.
  • [10]Barthelme D, Dinkelaker S, Albers S-V, Londei P, Ermler U, Tampé R. Ribosome recycling depends on a mechanistic link between the FeS cluster domain and a conformational switch of the twin-ATPase ABCE1. Proc Natl Acad Sci. 2011; 108(8):3228-33.
  • [11]Paytubi S, Wang X, Lam YW, Izquierdo L, Hunter MJ, Jan E, Hundal HS, Proud CG. ABC50 promotes translation initiation in mammalian cells. J Biol Chem. 2009; 284(36):24061-73.
  • [12]Kartner N, Riordan JR, Ling V. Cell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines. Science. 1983; 221(4617):1285-8.
  • [13]Moitra K, Dean M. Evolution of ABC transporters by gene duplication and their role in human disease. Biol Chem. 2011; 392(1-2):29-37.
  • [14]Dean M. The Human ATP-Binding Cassette (ABC) Transporter Superfamily. National Center for Biotechnology Information (US); 2002, Bethesda (MD); 2002.
  • [15]Sheps JA, Ralph S, Zhao Z, Baillie DL, Ling V. The ABC transporter gene family of Caenorhabditis elegans has implications for the evolutionary dynamics of multidrug resistance in eukaryotes. Genome Biol. 2004; 5(3):R15. BioMed Central Full Text
  • [16]Roth CW, Holm I, Graille M, Dehoux P, Rzhetsky A, Wincker P, Weissenbach J, Brey PT. Identification of the Anopheles gambiae ATP-binding cassette transporter superfamily genes. Mol Cells. 2003; 15(2):150-8.
  • [17]Liu S, Zhou S, Tian L, Guo E, Luan Y, Zhang J, Li S. Genome-wide identification and characterization of ATP-binding cassette transporters in the silkworm, Bombyx mori. BMC Genomics. 2011; 12:491. BioMed Central Full Text
  • [18]Xie X, Cheng T, Wang G, Duan J, Niu W, Xia Q. Genome-wide analysis of the ATP-binding cassette (ABC) transporter gene family in the silkworm, Bombyx mori. Mol Biol Rep. 2012; 39(7):7281-91.
  • [19]Broehan G, Kroeger T, Lorenzen M, Merzendorfer H. Functional analysis of the ATP-binding cassette (ABC) transporter gene family of Tribolium castaneum. BMC Genomics. 2013; 14:6. BioMed Central Full Text
  • [20]Sturm A, Cunningham P, Dean M. The ABC transporter gene family of Daphnia pulex. BMC Genomics. 2009; 10:170. BioMed Central Full Text
  • [21]Dermauw W, Osborne EJ, Clark RM, Grbic M, Tirry L, Van Leeuwen T. A burst of ABC genes in the genome of the polyphagous spider mite Tetranychus urticae. BMC Genomics. 2013; 14:317. BioMed Central Full Text
  • [22]Liu S, Li Q, Liu Z. Genome-wide identification, characterization and phylogenetic analysis of 50 catfish ATP-binding cassette (ABC) transporter genes. PLoS One. 2013; 8(5):e63895.
  • [23]Annilo T, Chen ZQ, Shulenin S, Costantino J, Thomas L, Lou H, Stefanov S, Dean M. Evolution of the vertebrate ABC gene family: analysis of gene birth and death. Genomics. 2006; 88(1):1-11.
  • [24]Smith JJ, Kuraku S, Holt C, Sauka-Spengler T, Jiang N, Campbell MS, Yandell MD, Manousaki T, Meyer A, Bloom OE et al.. Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nat Genet. 2013; 45(4):415-21.
  • [25]Hardisty MW. Biology of the Cyclostomes. Chapman and Hall, London; 1979.
  • [26]Mehta TK, Ravi V, Yamasaki S, Lee AP, Lian MM, Tay B-H, Tohari S, Yanai S, Tay A, Brenner S et al.. Evidence for at least six Hox clusters in the Japanese lamprey (Lethenteron japonicum). 2013.
  • [27]Smith JJ, Stuart AB, Sauka-Spengler T, Clifton SW, Amemiya CT. Development and analysis of a germline BAC resource for the sea lamprey, a vertebrate that undergoes substantial chromatin diminution. Chromosoma. 2010; 119(4):381-9.
  • [28]Smith JJ, Antonacci F, Eichler EE, Amemiya CT. Programmed loss of millions of base pairs from a vertebrate genome. Proc Natl Acad Sci U S A. 2009; 106(27):11212-7.
  • [29]Piehler AP, Wenzel JJ, Olstad OK, Haug KB, Kierulf P, Kaminski WE. The human ortholog of the rodent testis-specific ABC transporter Abca17 is a ubiquitously expressed pseudogene (ABCA17P) and shares a common 5′ end with ABCA3. BMC Mol Biol. 2006; 7:28. BioMed Central Full Text
  • [30]Chen ZQ, Annilo T, Shulenin S, Dean M. Three ATP-binding cassette transporter genes, Abca14, Abca15, and Abca16, form a cluster on mouse Chromosome 7F3. Mamm Genome. 2004; 15(5):335-43.
  • [31]Li G, Shi P, Wang Y. Evolutionary dynamics of the ABCA chromosome 17q24 cluster genes in vertebrates. Genomics. 2007; 89(3):385-91.
  • [32]Annilo T, Chen ZQ, Shulenin S, Dean M. Evolutionary analysis of a cluster of ATP-binding cassette (ABC) genes. Mamm Genome. 2003; 14(1):7-20.
  • [33]Moitra K, Scally M, McGee K, Lancaster G, Gold B, Dean M. Molecular evolutionary analysis of ABCB5: the ancestral gene is a full transporter with potentially deleterious single nucleotide polymorphisms. PLoS One. 2011; 6(1):e16318.
  • [34]Michalova V, Murray BW, Sultmann H, Klein J. A contig map of the Mhc class I genomic region in the zebrafish reveals ancient synteny. J Immunol. 2000; 164(10):5296-305.
  • [35]Tammur J, Prades C, Arnould I, Rzhetsky A, Hutchinson A, Adachi M, Schuetz JD, Swoboda KJ, Ptacek LJ, Rosier M et al.. Two new genes from the human ATP-binding cassette transporter superfamily, ABCC11 and ABCC12, tandemly duplicated on chromosome 16q12. Gene. 2001; 273(1):89-96.
  • [36]Annilo T, Dean M. Degeneration of an ATP-binding cassette transporter gene, ABCC13, in different mammalian lineages. Genomics. 2004; 84(1):34-46.
  • [37]Remaley AT, Bark S, Walts AD, Freeman L, Shulenin S, Annilo T, Elgin E, Rhodes HE, Joyce C, Dean M et al.. Comparative genome analysis of potential regulatory elements in the ABCG5-ABCG8 gene cluster. Biochem Biophys Res Commun. 2002; 295(2):276-82.
  • [38]Uinuk-ool TS, Mayer WE, Sato A, Takezaki N, Benyon L, Cooper MD, Klein J. Identification and characterization of a TAP-family gene in the lamprey. Immunogenetics. 2003; 55(1):38-48.
  • [39]Cai SY, Lionarons DA, Hagey L, Soroka CJ, Mennone A, Boyer JL. Adult sea lamprey tolerates biliary atresia by altering bile salt composition and renal excretion. Hepatology. 2013; 57(6):2418-26.
  • [40]Oram JF, Lawn RM. ABCA1. The gatekeeper for eliminating excess tissue cholesterol. J Lipid Res. 2001; 42(8):1173-9.
  • [41]Yvan-Charvet L, Wang N, Tall AR. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol. 2010; 30(2):139-43.
  • [42]Sun H, Nathans J. ABCR: rod photoreceptor-specific ABC transporter responsible for Stargardt disease. Methods Enzymol. 2000; 315:879-97.
  • [43]Borst P, Elferink RO. Mammalian ABC transporters in health and disease. Annu Rev Biochem. 2002; 71:537-92.
  • [44]Kelsell DP, Norgett EE, Unsworth H, Teh MT, Cullup T, Mein CA, Dopping-Hepenstal PJ, Dale BA, Tadini G, Fleckman P et al.. Mutations in ABCA12 underlie the severe congenital skin disease harlequin ichthyosis. Am J Hum Genet. 2005; 76(5):794-803.
  • [45]Lefevre C, Audebert S, Jobard F, Bouadjar B, Lakhdar H, Boughdene-Stambouli O, Blanchet-Bardon C, Heilig R, Foglio M, Weissenbach J et al.. Mutations in the transporter ABCA12 are associated with lamellar ichthyosis type 2. Hum Mol Genet. 2003; 12(18):2369-78.
  • [46]Akiyama M, Sugiyama-Nakagiri Y, Sakai K, McMillan JR, Goto M, Arita K, Tsuji-Abe Y, Tabata N, Matsuoka K, Sasaki R et al.. Mutations in lipid transporter ABCA12 in harlequin ichthyosis and functional recovery by corrective gene transfer. J Clin Invest. 2005; 115(7):1777-84.
  • [47]Frank NY, Margaryan A, Huang Y, Schatton T, Waaga-Gasser AM, Gasser M, Sayegh MH, Sadee W, Frank MH. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res. 2005; 65(10):4320-33.
  • [48]Zutz A, Gompf S, Schagger H, Tampe R. Mitochondrial ABC proteins in health and disease. Biochim Biophys Acta. 2009; 1787(6):681-90.
  • [49]Huls M, van den Heuvel JJ, Dijkman HB, Russel FG, Masereeuw R. ABC transporter expression profiling after ischemic reperfusion injury in mouse kidney. Kidney Int. 2006; 69(12):2186-93.
  • [50]Youson JH. Biliary atresia in lampreys. Adv Vet Sci Comp Med. 1993; 37:197-255.
  • [51]Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL et al.. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989; 245(4922):1066-73.
  • [52]Childers M, Eckel G, Himmel A, Caldwell J. A new model of cystic fibrosis pathology: lack of transport of glutathione and its thiocyanate conjugates. Med Hypotheses. 2007; 68(1):101-12.
  • [53]Bryan J, Munoz A, Zhang X, Dufer M, Drews G, Krippeit-Drews P, Aguilar-Bryan L. ABCC8 and ABCC9: ABC transporters that regulate K+ channels. Pflugers Arch. 2007; 453(5):703-18.
  • [54]Morita M, Imanaka T. Peroxisomal ABC transporters: Structure, function and role in disease. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2012; 1822(9):1387-96.
  • [55]Kersey PJ, Allen JE, Christensen M, Davis P, Falin LJ, Grabmueller C, Hughes DS, Humphrey J, Kerhornou A, Khobova J et al.. Ensembl Genomes 2013: scaling up access to genome-wide data. Nucleic Acids Res. 2014; 42(Database issue):D546-52.
  • [56]Pruitt KD, Brown GR, Hiatt SM, Thibaud-Nissen F, Astashyn A, Ermolaeva O, Farrell CM, Hart J, Landrum MJ, McGarvey KM et al.. RefSeq: an update on mammalian reference sequences. Nucleic Acids Res. 2014; 42(Database issue):D756-63.
  • [57]Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 2000; 16(6):276-7.
  • [58]Stanke M, Morgenstern B. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 2005; 33(Web Server issue):W465-7.
  • [59]Solovyev VV. Statistical approaches in Eukaryotic gene prediction. In: Handbook of Statistical genetics. 2007.1616.
  • [60]Letunic I, Doerks T, Bork P. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res. 2012; 40(Database issue):D302-5.
  • [61]Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997; 25(24):4876-82.
  • [62]Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013; 30(12):2725-9.
  • [63]Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009; 10(3):R25. BioMed Central Full Text
  • [64]Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30(15):2114-2120.
  • [65]Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009; 25(9):1105-11.
  • [66]Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M et al.. TM4: a free, open-source system for microarray data management and analysis. Biotechniques. 2003; 34(2):374-8.
  文献评价指标  
  下载次数:80次 浏览次数:9次