期刊论文详细信息
BMC Genomics
Characterization of the kidney transcriptome of the South American olive mouse Abrothrix olivacea
Enrique P Lessa1  Daniel E Naya1  Valeria Varas2  Juan C Opazo2  Lourdes Valdez2  Guillermo D'Elía2  Matias Feijoo1  Facundo M Giorello1 
[1] Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay;Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
关键词: Normalization methods;    De novo assembly;    Gene expression;    RNA-Seq;    Muroidea;    Sigmodontinae;    Cricetidae;    Abrotrichini;    Abrothrix olivacea;   
Others  :  1216645
DOI  :  10.1186/1471-2164-15-446
 received in 2013-12-13, accepted in 2014-05-27,  发布年份 2014
PDF
【 摘 要 】

Background

The olive mouse Abrothrix olivacea is a cricetid rodent of the subfamily Sigmodontinae that inhabits a wide range of contrasting environments in southern South America, from aridlands to temperate rainforests. Along its distribution, it presents different geographic forms that make the olive mouse a good focal case for the study of geographical variation in response to environmental variation. We chose to characterize the kidney transcriptome because this organ has been shown to be associated with multiple physiological processes, including water reabsorption.

Results

Transcriptomes of thirteen kidneys from individuals from Argentina and Chile were sequenced using Illumina technology in order to obtain a kidney reference transcriptome. After combining the reads produced for each sample, we explored three assembly strategies to obtain the best reconstruction of transcripts, TrinityNorm and DigiNorm, which include its own normalization algorithms for redundant reads removal, and Multireads, which simply consist on the assembly of the joined reads. We found that Multireads strategy produces a less fragmented assembly than normalization algorithms but recovers fewer number of genes. In general, about 15000 genes were annotated, of which almost half had at least one coding sequence reconstructed at 99% of its length. We also built a list of highly expressed genes, of which several are involved in water conservation under laboratory conditions using mouse models.

Conclusion

Based on our assembly results, Trinity's in silico normalization is the best algorithm in terms of cost-benefit returns; however, our results also indicate that normalization should be avoided if complete or nearly complete coding sequences of genes are desired. Given that this work is the first to characterize the transcriptome of any member of Sigmodontinae, a subfamily of cricetid rodents with about 400 living species, it will provide valuable resources for future ecological and evolutionary genomic analyses.

【 授权许可】

   
2014 Giorello et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150701202821166.pdf 603KB PDF download
Figure 2. 88KB Image download
Figure 1. 43KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Waterhouse GR: Characters of new species of the genus Mus, from collection of Mr. Darwin. Proc Zool Soc London 1837, 5:15-21. 27–32
  • [2]D’Elía G, Pardiñas UFJ, Teta P, Patton JL: Definition and diagnosis of a new tribe of sigmodontine rodents (Cricetidae: Sigmodontinae), and a revised classification of the subfamily. Gayana 2007, 71:187-194.
  • [3]D’Elía G, Pardiñas UFJ: Subfamily Sigmodontinae Wagner, 1843. In Mamm South Am Vol 2 Rodents. Edited by Patton JL, Pardiñas UFJ, D’Elía G. Chicago: University of Chicago Press; in press
  • [4]Mann G: Los pequeños mamíferos de Chile. Gayana Zool 1978, 40:1-342.
  • [5]Pizarro R, Valdés R, García-chevesich P, Vallejos C, Sangüesa C, Morales C, Balocchi F, Abarza A, Fuentes R: Latitudinal analysis of rainfall intensity and mean annual precipitation in chile. Chil J Agric Res 2012, 72:252-261.
  • [6]Bozinovic F, Rojas JM, Gallardo PA, Palma RE, Gianoli E: Body mass and water economy in the South American olivaceous field mouse along a latitudinal gradient: Implications for climate change. J Arid Environ 2011, 75:411-415.
  • [7]Rodríguez-Serrano E, Cancino R a, Palma RE: Molecular phylogeography of Abrothrix olivaceus (Rodentia: Sigmodontinae) in Chile. J Mammal 2006, 87:971-980.
  • [8]Lessa EP, D’Elía G, Pardiñas UFJ: Genetic footprints of late Quaternary climate change in the diversity of Patagonian-Fueguian rodents. Mol Ecol 2010, 19:3031-3037.
  • [9]Metzker ML: Sequencing technologies - the next generation. Nat Rev Genet 2010, 11:31-46.
  • [10]Rizzo JM, Buck MJ: Key principles and clinical applications of “next-generation” DNA sequencing. Cancer Prev Res 2012, 5:887-900.
  • [11]Morozova O, Marra M a: Applications of next-generation sequencing technologies in functional genomics. Genomics 2008, 92:255-264.
  • [12]Ekblom R, Galindo J: Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity (Edinb) 2011, 107:1-15.
  • [13]Shokralla S, Spall JL, Gibson JF, Hajibabaei M: Next-generation sequencing technologies for environmental DNA research. Mol Ecol 2012, 21:1794-1805.
  • [14]Garg R, Patel RK, Tyagi AK, Jain M: De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res 2011, 18:53-63.
  • [15]Shi C-Y, Yang H, Wei C-L, Yu O, Zhang Z-Z, Jiang C-J, Sun J, Li Y-Y, Chen Q, Xia T, Wan X-C: Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics 2011, 12:131. BioMed Central Full Text
  • [16]Lorizzo M, Senalik DA, Grzebelus D, Bowman M, Cavagnaro PF, Matvienko M, Ashrafi H, Van Deynze A, Simon PW: De novo assembly and characterization of the carrot transcriptome reveals novel genes, new markers, and genetic diversity. BMC Genomics 2011, 12:389. BioMed Central Full Text
  • [17]Feldmeyer B, Wheat CW, Krezdorn N, Rotter B, Pfenninger M: Short read Illumina data for the de novo assembly of a non-model snail species transcriptome (Radix balthica, Basommatophora, Pulmonata), and a comparison of assembler performance. BMC Genomics 2011, 12:317. BioMed Central Full Text
  • [18]Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10:57-63.
  • [19]Brown CT, Howe A, Zhang Q, Pyrkosz AB, Brom TH: A reference-free algorithm for computational normalization of shotgun sequencing data. 2012. arXiv:1203.4802v2 [q-bio.GN]
  • [20]Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, Macmanes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, Leduc RD, Friedman N, Regev A: De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 2013, 8:1494-1512.
  • [21]Mbassa GK: Mammalian renal modifications in dry environments. Vet Res Commun 1988, 12:1-18.
  • [22]Shultz PJ, Tolins JP: Adaptation to increased dietary salt intake in the rat. Role of endogenous nitric oxide. J Clin Invest 1993, 91:642-650.
  • [23]Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, Di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 2011, 29:644-652.
  • [24]Altenhoff AM, Schneider A, Gonnet GH, Dessimoz C: OMA 2011: orthology inference among 1000 complete genomes. Nucleic Acids Res 2011, 39:D289-D294.
  • [25]Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer ELL, Eddy SR, Bateman A: The Pfam protein families database. Nucleic Acids Res 2010, 38:D211-D222.
  • [26]Eddy SR: Profile hidden Markov models. Bioinformatics 1998, 14:755-763.
  • [27]Eddy SR, Mitchison G, Durbin R: Maximum discrimination hidden Markov models of sequence consensus. J Comput Biol 1995, 2:9-23.
  • [28]Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA: DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 2003, 4:P3. BioMed Central Full Text
  • [29]Li B, Dewey CN: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma 2011, 12:323. BioMed Central Full Text
  • [30]Pradervand S, Zuber Mercier A, Centeno G, Bonny O, Firsov D: A comprehensive analysis of gene expression profiles in distal parts of the mouse renal tubule. Pflügers Arch Eur J Physiol 2010, 460:925-952.
  • [31]Hershkovitz V, Sela N, Taha-Salaime L, Liu J, Rafael G, Kessler C, Aly R, Levy M, Wisniewski M, Droby S: De-novo assembly and characterization of the transcriptome of Metschnikowia fructicola reveals differences in gene expression following interaction with Penicillium digitatum and grapefruit peel. BMC Genomics 2013, 14:168. BioMed Central Full Text
  • [32]Liu T, Zhu S, Tang Q, Chen P, Yu Y, Tang S: De novo assembly and characterization of transcriptome using Illumina paired-end sequencing and identification of CesA gene in ramie (Boehmeria nivea L. Gaud). BMC Genomics 2013, 14:125. BioMed Central Full Text
  • [33]Yano N, Endoh M, Fadden K, Yamashita H, Kane A, Sakai H, Rifai A: Comprehensive gene expression profile of the adult human renal cortex: analysis by cDNA array hybridization. Kidney Int 2000, 57:1452-1459.
  • [34]Spradling KD, Glenn JP, Garcia R, Shade RE, Cox LA: The baboon kidney transcriptome: analysis of transcript sequence, splice variants, and abundance. PLoS One 2013, 8:e57563.
  • [35]Bullard JH, Purdom E, Hansen KD, Dudoit S: Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinforma 2010, 11:94. BioMed Central Full Text
  • [36]Fenton RA, Knepper MA: Mouse models and the urinary concentrating mechanism in the new millennium. Physiol Rev 2007, 87:1083-1112.
  • [37]Meij IC, Koenderink JB, Van Bokhoven H, Assink KF, Groenestege WT, De Pont JJ, Bindels RJ, Monnens LA, Van Den Heuvel LP, Knoers NV: Dominant isolated renal magnesium loss is caused by misrouting of the Na+, K + -ATPase gamma-subunit. Ann N Y Acad Sci 2003, 986:265-266.
  • [38]Bachmann S, Dawnay AB, Bouby N, Bankir L: Tamm-Horsfall protein excretetion during chronic alterations in urinary concentration and protein intake in rat. Ren Physiol Biochem 1991, 14:236-245.
  • [39]Cramer SD, Ferree PM, Lin K, Milliner DS, Holmes RP: The gene encoding hydroxypyruvate reductase (GRHPR) is mutated in patients with primary hyperoxaluria type II. Hum Mol Genet 1999, 8:2063-2069.
  • [40]Lam CW, Yuen YP, Lai CK, Tong SF, Lau LK, Tong KL, Chan YW: Novel mutation in the GRHPR gene in a Chinese patient with primary hyperoxaluria type 2 requiring renal transplantation from a living related donor. Am J Kidney Dis 2001, 38:1307-1310.
  • [41]Steffgen J, Kampfer K, Grupp C, Langenberg C, Müller GA, Grunewald RW: Osmoregulation of aldose reductase and sorbitol dehydrogenase in cultivated interstitial cells of rat renal inner medulla. Nephrol Dial Transplant 2003, 18:2255-2261.
  • [42]Al Samri MT, Al Shamsi M, Al-Salam S, Marzouqi F, Al Mansouri A, Al-Hammadi S, Balhaj G, Al Dawaar SKM, Al Hanjeri RSMS, Benedict S, Sudhadevi M, Conca W, Penefsky HS, Souid A-K: Measurement of oxygen consumption by murine tissues in vitro. J Pharmacol Toxicol Methods 2011, 63:196-204.
  • [43]Tahara EB, Navarete FDT, Kowaltowski AJ: Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation. Free Radic Biol Med 2009, 46:1283-1297.
  • [44]Sikes RS, Gannon WL: Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J Mammal 2011, 92:235-253.
  • [45]Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B: AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res 2006, 34:W435-W439.
  • [46]Cornman R, Bennett AK, Murray K, Evans JD, Elsik CG, Aronstein K: Transcriptome analysis of the honey bee fungal pathogen. Ascosphaera apis: implications for host pathogenesis. BMC Genomics 2012, 13:285. BioMed Central Full Text
  • [47]Wang S, Furmanek T, Kryvi H, Krossøy C, Totland GK, Grotmol S, Wargelius A: Transcriptome sequencing of Atlantic salmon (Salmo salar L.) notochord prior to development of the vertebrae provides clues to regulation of positional fate, chordoblast lineage and mineralisation. BMC Genomics 2014, 15:141. BioMed Central Full Text
  • [48]Eckalbar WL, Hutchins ED, Markov GJ, Allen AN, Corneveaux JJ, Lindblad-Toh K, Di Palma F, Alföldi J, Huentelman MJ, Kusumi K: Genome reannotation of the lizard Anolis carolinensis based on 14 adult and embryonic deep transcriptomes. BMC Genomics 2013, 14:49. BioMed Central Full Text
  • [49]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10:R25. BioMed Central Full Text
  文献评价指标  
  下载次数:33次 浏览次数:13次