期刊论文详细信息
BMC Developmental Biology
The natural insect peptide Neb-colloostatin induces ovarian atresia and apoptosis in the mealworm Tenebrio molitor
Mariola Kuczer1  Elżbieta Gabała2  Grzegorz Rosiński3  Elżbieta Czarniewska3 
[1] Faculty of Chemistry, Wrocław University, Joliot-Curie 14, 50-383 Wroclaw, Poland;Current address: Research Centre of Quarantine, Invasive & Genetically Modified Organisms, Węgorka 20, 60-318 Poznań, Poland;Department of Animal Physiology & Development, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
关键词: Autophagy;    Apoptosis;    Follicle atresia;    Gonadoinhibitory peptide;    Neb-colloostatin;    Insect ovary;   
Others  :  1085279
DOI  :  10.1186/1471-213X-14-4
 received in 2013-07-17, accepted in 2014-01-17,  发布年份 2014
PDF
【 摘 要 】

Background

The injection of Neb-colloostatin into T. molitor females causes gonadoinhibitory effects on ovarian development. This peptide inhibits intercellular space formation (patency) in follicular epithelium and results in slowed vitellogenesis, delayed ovulation, reduced number of eggs laid and presumably cell death in the terminal follicles. However, as does the form of cell death in the terminal follicle, the mode of action of Neb-colloostatin remains unknown.

Results

We tested Neb-colloostatin for a sterilizing effect on females of Tenebrio molitor. We report that injection of nanomolar doses of Neb-colloostatin induce ovarian follicle atresia in 4-day old females during their first gonadotropic cycle. Light microscope observations revealed morphological changes in the ovary: after Neb-colloostatin injection the terminal oocytes are significantly smaller and elicit massive follicle resorption, but the control terminal follicles possess translucent ooplasm in oocytes at different stages of vitellogenesis. A patency is visible in follicular epithelium of the control vitellogenic oocytes, whereas peptide injection inhibits intercellular space formation and, in consequence, inhibits vitellogenesis. Confocal and electron microscope examination showed that peptide injection causes changes in the morphology indicating death of follicular cells. We observed F-actin cytoskeleton disorganization, induction of caspase activity, changes in chromatin organization and autophagic vacuole formation. Moreover, the apical cytoplasm of follicular cells is filled with numerous free ribosomes, probably indicating a higher demand for protein biosynthesis, especially in preparation for autophagic vacuole formation. On the other hand, the process of polyribosomes formation is inhibited, indicating the contributing effect of this hormone.

Conclusion

Neb-colloostatin induces atresia in the mealworm ovary. Degeneration of T. molitor follicles includes changes in morphology and viability of follicular cells, and oosorption as a consequence of these changes.

【 授权许可】

   
2014 Czarniewska et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113172046255.pdf 2574KB PDF download
Figure 4. 230KB Image download
Figure 3. 154KB Image download
Figure 2. 170KB Image download
Figure 1. 96KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Papaj DR: Ovarian dynamics and host use. Annu Rev Entomol 2000, 45:423-448.
  • [2]Aggarwal SK: Histochemistry of vitellogenesis in the adult mealworm Tenebrio molitor L. (Coleoptera, Tenebrionidae). Cellule 1964, 64:371-379.
  • [3]Ullmann SL: Oogenesis in Tenebrio molitor: histological and autoradiograhical ovservations on pupal and adult ovaries. J Embryol Exp Morphol 1973, 30:179-217.
  • [4]Kuczer M, Rosiński G, Konopińska D: Insect gonadotropic peptide hormones: some recent developments. J Pept Sci 2007, 13:16-26.
  • [5]Borovsky D, Carlson DA, Griffin PR, Shabanowitz J, Hunt DF: Mosquito oostatic factor: a novel decapeptide modulating trypsin-like enzyme biosynthesis in the midgut. FASEB J 1990, 4:3015-3020.
  • [6]Bylemans D, Borovsky D, De Loof A: Existence of an oostatic factor controling trypsin activity in the grey fleshfly, Sarcophaga bullata. Trinity College, Dublin, Ireland: Proceedings of the 6th International Congress of Invertebrate Reproduction; 1992:44.
  • [7]Bylemans D, Borovsky D, Hunt DF, Shabanowitz J, Grauwels L, De Loof A: Sequencing and characterization of trypsin modulating oostatic factor (TMOF) from the ovaries of the grey fleshfly, Neobelllieria bullata. Regul Pept 1994, 50:61-72.
  • [8]Kuczer M, Wasielewski O, Skonieczna M, Grodecki S, Rosiński G, Lombarska-Śliwińska D, Konopińska D: Insect oostatic and gonadotropic peptides: synthesis and new biological activities in Tenebrio molitor and Zophobas atratus. Pesticides 2004, 3–4:25-31.
  • [9]Wasielewski O, Rosinski G: Gonadoinhibitory effects of Neb-colloostatin and Neb-TMOF on ovarian development in the mealworm, Tenebrio molitor L. Arch Insect Biochem Physiol 2007, 64:131-141.
  • [10]Hua Y-J, Bylemans D, De Loof A, Koolman J: Inhibition of ecdysone biosynthesis in flies by a hexapeptide isolated from vitellogenic ovaries. Mol Cell Endocrinol 1994, 104:R1-R4.
  • [11]De Loof A, Bylemans D, Janssen I, Huybrechts R: The folliculostatins of two dipteran species, their relation to matrix proteins and prospects for practical applications. Entomol Exp Appl 1995, 77:1-9.
  • [12]De Loof A, Bylemans D, Schoofs L, Janssen I, Spittaels K, Van-den Broeck J, Huybrechts R, Borovsky D, Hua Y-H, Koolman J, Sower D: Folliculostatins, gonadotropins and a model for control of growth in the grey fleshly, Neobellieria bullata. Insect Biochem Mol Biol 1995, 25:661-667.
  • [13]Bylemans D, Proost P, Samijn B, Borovsky D, Grauwels L, Huybrechts R, Van Damme J, Van Beeumen J, De Loof A: Neb-colloostatin, a second folliculostatin of the grey fleshfly, Neobellieria bullata. Eur J Biochem 1995, 228:45-49.
  • [14]Czarniewska E, Mrówczyńska L, Kuczer M, Rosiński G: The pro-apoptotic action of the peptide hormone, Neb-colloostatin, on insect haemocytes. J Exp Biol 2012, 215:4308-4313.
  • [15]Kerr JF, Wyllie AH, Currie AR: Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Brit J Cancer 1972, 26:239-257.
  • [16]Williams JR, Little JB, Shipley WU: Association of mammalian cell death with specific endonucleolytic degradation of DNA. Nature 1974, 252:754-756.
  • [17]Tilly JL: Apoptosis and ovarian function. Rev Reprod 1996, 1:162-172.
  • [18]Bursch W: The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ 2001, 8:569-581.
  • [19]Moreau K, Shouqing L, Rubinstein DC: Cytoprotective roles for autophagy. Curr Opin Cell Biol 2010, 22:206-211.
  • [20]De Pol A, Vaccina F, Forabosco A, Cavazzuti E, Marzona L: Apoptosis of germ cells during human prenatal oogenesis. Hum Reprod 1997, 12:2235-2241.
  • [21]Gumienny TL, Lambie E, Hartwieg E, Horvitz HR, Hengartner MO: Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development 1999, 126:1011-1022.
  • [22]Giorgi F, Deri P: Cell death in ovarian chambers of Drosophila melanogaster. J Embryol Exp Morphol 1976, 35:521-533.
  • [23]Nezis IP, Stravopodis DJ, Papassideri I, Robert-Nicoud M, Margaritis LH: Stage-specific apoptotic patterns during Drosophila oogenesis. Eur J Cell Biol 2000, 79:610-620.
  • [24]Nezis IP, Stravopodis DJ, Margaritis LH, Papassideri IS: Folicular atresia during Dacus oleae oogenesis. J Insect Physiol 2006, 52:282-290.
  • [25]Uchida K, Nishizuka M, Ohmori D, Ueno T, Eshita Y, Fukunaga A: Follicular epithelial cell apoptosis of atretic follicles within developing ovaries of the mosquito Culex pipiens pallens. J Insect Physiol 2004, 50:903-912.
  • [26]Valentzas AD, Nezis IP, Stravopodis DJ, Papassideri IS, Margaritis LH: Stage-specific regulation of programmed cell death during oogenesis of the medfly Ceratitis capitata (Diptera, Tephritidae). Int J Dev Biol 2007, 51:57-66.
  • [27]Buszczak M, Freeman MR, Carlson JR, Bender M, Cooley L, Segraves WA: Ecdysone response genes govern egg chamber development during mid-oogenesis in Drosophila. Development 1999, 126:4581-4589.
  • [28]Chao S, Nagoshi RN: Induction of apoptosis in the germline and follicle layer of Drosophila egg chamber. Mech Dev 1999, 88:159-172.
  • [29]Soller M, Bownes M, Kubli E: Control of oocyte maturation in sexually mature Drosophila females. Dev Biol 1999, 208:337-351.
  • [30]Terashima J, Bownes M: A microarray analysis of genes involved in relating egg production to nutritional intake in Drosophila melanogaster. Cell Death Differ 2004, 12:429-440.
  • [31]Medeiros MN, Ramos IB, Oliveira DMP, da Silva RCB, Gomes FM, Medeiros LN, Kurtenbach E, Chiarini LB, Masuda H, de Souza W, Machado EA: Microscopic and molecular characterization of ovarian follicle atresia in Rhodinus prolixus Stahl under immune challenge. J Insect Physiol 2011, 57:945-953.
  • [32]Markaki M, Craig RK, Savakis C: Insect population control using female specific pro-drug activation. Insect Biochem Mol Biol 2004, 34:131-137.
  • [33]Bursch W, Hochegger K, Torok L, Marian B, Ellinger A, Hermann RS: Autophagic and apoptotic types of programmed cell death exhibit different fates of cytoskeletal filaments. J Cell Sci 2000, 113:1189-1198.
  • [34]Aguirre SA, Fruttero LL, Leyria J, Defferrari MS, Pinto PM, Settembrini BP, Rubiolo ER, Carlini CR, Canavoso LE: Biochemical changes in the transition from vitellogenesis to follicular atresia in the hematophagous Dipetalogaster maxima (Hemiptera: Reduviidae). Insect Biochem Mol Biol 2011, 41:823-841.
  • [35]Velentzas AD, Nezis IP, Stravopodis DJ, Papassideri IS, Margaritis LH: Apoptosis and autophagy function cooperatively for the efficacious execution of programmed nurse cell death during Drosophila virilis oogenesis. Autophagy 2007, 3:130-132.
  • [36]Velentzas AD, Nezis IP, Stravopodis DJ, Papassideri IS, Margaritis LH: Mechanisms of programmed cell death during oogenesis in Drosophila virilis. Cell Tissue Res 2007, 327:399-414.
  • [37]Bloomart EFC, Luiken JJFP, Meijer AJ: Autophagic proteolysis, control and specificity. Histochem J 1997, 29:365-385.
  • [38]Rosiński G, Wrzeszcz A, Obuchowicz L: Differences in trehalase activity in the intestine of fed and starved larvae of Tenebrio molitor L. Insect Biochem 1979, 9:485-488.
  • [39]Fields GB, Noble RL: Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res 1990, 35:161-214.
  • [40]Biederbick A, Kern HF, Elsasser HP: Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol 1995, 66:3-14.
  文献评价指标  
  下载次数:3次 浏览次数:7次