期刊论文详细信息
BMC Genomics
The ecological genomic basis of salinity adaptation in Tunisian Medicago truncatula
Sergey V Nuzhdin5  Sharon Y Strauss3  Douglas R Cook7  Mohammed Elarbi Aouani2  Stephanie S Porter3  Yazid Badri2  Kais Zribi2  Naceur Djébali2  Soumaya Arraouadi2  Wendy T Vu5  Matilde A Cordeiro4  Sonia Cuellar-Ortiz7  Peter L Chang5  Fathi Barhoumi2  Ken S Moriuchi7  Mounawer Badri2  Eric JB von Wettberg1  Maren L Friesen6 
[1] Kushlan Institute for Tropical Science, Fairchild Tropical Botanic Garden, Coral Gables, FL 33156, USA;Centre of Biotechnology of Borj Cedria, B.P. 901 Hammam-Lif, 2050, Tunisia;Center for Population Biology, University of California Davis, Davis, California 95616, USA;Instituto de Tecnologia Química e Biológica, Oeiras, Portugal;Section of Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA;Present address: Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA;Department of Plant Pathology, University of California Davis, Davis, CA 95616, USA
关键词: Abiotic stress;    Population genetics;    Ecological genetics;    Agriculture;    Adaptation;   
Others  :  1122567
DOI  :  10.1186/1471-2164-15-1160
 received in 2014-09-04, accepted in 2014-12-12,  发布年份 2014
PDF
【 摘 要 】

Background

As our world becomes warmer, agriculture is increasingly impacted by rising soil salinity and understanding plant adaptation to salt stress can help enable effective crop breeding. Salt tolerance is a complex plant phenotype and we know little about the pathways utilized by naturally tolerant plants. Legumes are important species in agricultural and natural ecosystems, since they engage in symbiotic nitrogen-fixation, but are especially vulnerable to salinity stress.

Results

Our studies of the model legume Medicago truncatula in field and greenhouse settings demonstrate that Tunisian populations are locally adapted to saline soils at the metapopulation level and that saline origin genotypes are less impacted by salt than non-saline origin genotypes; these populations thus likely contain adaptively diverged alleles. Whole genome resequencing of 39 wild accessions reveals ongoing migration and candidate genomic regions that assort non-randomly with soil salinity. Consistent with natural selection acting at these sites, saline alleles are typically rare in the range-wide species' gene pool and are also typically derived relative to the sister species M. littoralis. Candidate regions for adaptation contain genes that regulate physiological acclimation to salt stress, such as abscisic acid and jasmonic acid signaling, including a novel salt-tolerance candidate orthologous to the uncharacterized gene AtCIPK21. Unexpectedly, these regions also contain biotic stress genes and flowering time pathway genes. We show that flowering time is differentiated between saline and non-saline populations and may allow salt stress escape.

Conclusions

This work nominates multiple potential pathways of adaptation to naturally stressful environments in a model legume. These candidates point to the importance of both tolerance and avoidance in natural legume populations. We have uncovered several promising targets that could be used to breed for enhanced salt tolerance in crop legumes to enhance food security in an era of increasing soil salinization.

【 授权许可】

   
2014 Friesen et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150214022440644.pdf 1435KB PDF download
Figure 3. 78KB Image download
Figure 2. 59KB Image download
Figure 1. 109KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Levene H: Genetic equilibrium when more than one ecological niche is available. Am Nat 1953, 87:331-333.
  • [2]Hereford J: A quantitative survey of local adaptation and fitness trade-offs. Am Nat 2009, 173:579-588.
  • [3]Clausen J, Hiesey WM: Genetic Structure of Ecological Races (Experimental Studies on the Nature of Species, Vol. 4). Washington: Carnegie Institution of Washington; 1958.
  • [4]Kawecki TJ, Ebert D: Conceptual issues in local adaptation. Ecol Lett 2004, 7:1225-1241.
  • [5]Blanquart F, Kaltz O, Nuismer SL, Gandon S: A practical guide to measuring local adaptation. Ecol Lett 2013, 16:1195-1205.
  • [6]Turner TL, Bourne EC, Wettberg Von EJ, Hu TT, Nuzhdin SV: Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nat Genet 2010, 42:260-263.
  • [7]Ellison CE, Hall C, Kowbel D, Welch J, Brem RB, Glass NL, Taylor JW: Population genomics and local adaptation in wild isolates of a model microbial eukaryote. Proc Natl Acad Sci U S A 2011, 108:2831-2836.
  • [8]Renaut S, Owens GL, Rieseberg LH: Shared selective pressure and local genomic landscape lead to repeatable patterns of genomic divergence in sunflowers. Mol Ecol 2013, 23:311-324.
  • [9]Fischer MC, Rellstab C, Tedder A, Zoller S, Gugerli F, Shimizu KK, Holderegger R, Widmer A: Population genomic footprints of selection and associations with climate in natural populations of Arabidopsis hallerifrom the Alps. Mol Ecol 2013, 22:5594-5607.
  • [10]Axelsson E, Ratnakumar A, Arendt M-L, Maqbool K, Webster MT, Perloski M, Liberg O, Arnemo JM, Hedhammar Å, Lindblad-Toh K: The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature 2013, 495:360-364.
  • [11]Friesen M, Wettberg Von EJ: Adapting genomics to study the evolution and ecology of agricultural systems. Curr Opin Plant Biol 2010, 13:119-125.
  • [12]Rozema J, Flowers T: Crops for a salinized world. Science 2008, 322:1478-1480.
  • [13]Wang G: Agricultural drought in a future climate: results from 15 global climatemodels participating in the IPCC 4th assessment. Clim Dyn 2005, 25:739-753.
  • [14]The state of the world's land and water resources for food and agriculture: Managing systems at risk 2011. http://www.fao.org/docrep/017/i1688e/i1688e.pdf webcite
  • [15]Flowers TJ, Hajibagheri MA, Clipson NJW: Halophytes. Q Rev Biol 1986, 61:313-337.
  • [16]Lesins K, Lesins I: Genus Medicago (Leguminosae), a Taxogenetic Study. The Hague: Dr. W. Junk Publishers; 1979.
  • [17]Young ND, Debellé F, Oldroyd GED, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KFX, Gouzy J, Schoof H, Van de Peer Y, Proost S, Cook DR, Meyers BC, Spannagl M, Cheung F, De Mita S, Krishnakumar V, Gundlach H, Zhou S, Mudge J, Bharti AK, Murray JD, Naoumkina MA, Rosen B, Silverstein KAT, Tang H, Rombauts S, Zhao PX, Zhou P, et al.: The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 2011, 480:520-524.
  • [18]Siol M, Prosperi JM, Bonnin I, Ronfort J: How multilocus genotypic pattern helps to understand the history of selfing populations: a case study in Medicago truncatula. Heredity 2008, 100:517-525.
  • [19]Yoder JB, Briskine R, Mudge J, Farmer A, Paape T, Steele K, Weiblen GD, Bharti AK, Zhou P, May GD, Young ND, Tiffin P: Phylogenetic Signal Variation in the Genomes of Medicago (Fabaceae). Syst Biol 2013, 62:424-438.
  • [20]Branca A, Paape TD, Zhou P, Briskine R, Farmer AD, Mudge J, Bharti AK, Woodward JE, May GD, Gentzbittel L, Ben C, Denny R, Sadowsky MJ, Ronfort J, Bataillon T, Young ND, Tiffin P: Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula. Proc Natl Acad Sci U S A 2011, 108:E864-E870.
  • [21]Yoder JB, Stanton-Geddes J, Zhou P, Briskine R, Young ND, Tiffin P: Genomic signature of adaptation to climate in medicago truncatula. Genetics 2014, 196:1263-1275.
  • [22]Stanton-Geddes J, Paape T, Epstein B, Briskine R, Yoder J, Mudge J, Bharti AK, Farmer AD, Zhou P, Denny R, May GD, Erlandson S, Yakub M, Sugawara M, Sadowsky MJ, Young ND, Tiffin P: Candidate genes and genetic architecture of symbiotic and agronomic traits revealed by whole-genome, sequence-based association genetics in Medicago truncatula. PLoS One 2013, 8:e65688.
  • [23]Badri M, Ilahi H, Huguet T, Aouani ME: Quantitative and molecular genetic variation in sympatric populations of Medicago laciniata and M. truncatula (Fabaceae): relationships with eco-geographical factors. Genet Res 2007, 89:107-122.
  • [24]Lazrek F, Roussel V, Ronfort J, Cardinet G, Chardon F, Aouani ME, Huguet T: The use of neutral and non-neutral SSRs to analyse the genetic structure of a Tunisian collection of Medicago truncatula lines and to reveal associations with eco-environmental variables. Genetica 2009, 135:391-402.
  • [25]Arraouadi S, Badri M, Zitoun A, Huguet T, Aouani M: Analysis of NaCl stress response in Tunisian and reference lines of Medicago truncatula. Russ J Plant Physiol 2011, 58:316-323.
  • [26]Arraouadi S, Badri M, Taamalli W, Huguet T, Aouani ME: Variability salt stress response analysis of Tunisian natural populations of Medicago truncatula (Fabaceae) using salt response index (SRI) ratio. Afr J Biotechnol 2011, 10:10636-10647.
  • [27]Friesen M, Cordeiro MA, Penmetsa RV, Badri M, Huguet T, Aouani ME, Cook DR, Nuzhdin SV: Population genomic analysis of Tunisian Medicago truncatula reveals candidates for local adaptation. Plant J 2010, 63:623-635.
  • [28]Castro BM, Moriuchi KS, Friesen M, Badri M, Nuzhdin SV, Strauss SY, Cook DR, Wettberg Von E: Parental environments and interactions with conspecifics alter salinity tolerance of offspring in the annual Medicago truncatula. J Ecol 2013, 101:1281-1287.
  • [29]Pritchard JK, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics 2000, 155:945-959.
  • [30]Evanno G, Regnaut S, Goudet J: Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 2005, 14:2611-2620.
  • [31]Beerli P, Palczewski M: Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 2010, 185:313-326.
  • [32]Mitchell-Olds T, Schmitt J: Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 2006, 441:947-952.
  • [33]Fournier Level A, Korte A, Cooper MD, Nordborg M, Schmitt J, Wilczek AM: A Map of local adaptation in Arabidopsis thaliana. Sci (New York, NY) 2011, 334:86-89.
  • [34]Leimu R, Fischer M: A meta-analysis of local adaptation in plants. PLoS One 2008, 3:e4010.
  • [35]Hoeksema JD, Forde SE: A meta-analysis of factors affecting local adaptation between interacting species. Am Nat 2008, 171:275-290.
  • [36]Lajeunesse MJ, Forbes MR: Host range and local parasite adaptation. P R Soc B 2002, 269:703-710.
  • [37]Siol M, Bonnin I, Olivieri I, Prosperi JM, Ronfort J: Effective population size associated with self-fertilization: lessons from temporal changes in allele frequencies in the selfing annual Medicago truncatula. J Evol Biol 2007, 20:2349-2360.
  • [38]Munns R, Tester M: Mechanisms of salinity tolerance. Annu Rev Plant Biol 2008, 59:651-681.
  • [39]Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI: Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev 2010, 24:1695-1708.
  • [40]Zhao R, Sun H-L, Mei C, Wang X-J, Yan L, Liu R, Zhang X-F, Wang X-F, Zhang D-P: The Arabidopsis Ca(2+) -dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and post-germination growth. New Phytol 2011, 192:61-73.
  • [41]Cordeiro MA, Moriuchi KS, Fotinos TD, Miller KE, Nuzhdin SV, Wettberg Von EJ, Cook DR: Population differentiation for germination and early seedling root growth traits under saline conditions in the annual legume Medicago truncatula (Fabaceae). Am J Bot 2014, 101:488-498.
  • [42]Howe GA, Jander G: Plant Immunity to Insect Herbivores. Annu Rev Plant Biol 2008, 59:41-66.
  • [43]Weinl S, Kudla J: The CBL-CIPK Ca(2+)-decoding signaling network: function and perspectives. New Phytol 2009, 184:517-528.
  • [44]Li R, Zhang J, Wu G, Wang H, Chen Y, Wei J: HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance. Plant Cell Environ 2012, 35:1582-1600.
  • [45]Ge L-F, Chao D-Y, Shi M, Zhu M-Z, Gao J-P, Lin H-X: Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. PLANTA 2008, 228:191-201.
  • [46]López M, Tejera NA, Iribarne C, Lluch C, Herrera-Cervera JA: Trehalose and trehalase in root nodules of Medicago truncatulaand Phaseolus vulgarisin response to salt stress. Physiol Plant 2008, 134:575-582.
  • [47]López M, Tejera NA, Lluch C: Validamycin A improves the response of Medicago truncatula plants to salt stress by inducing trehalose accumulation in the root nodules. J Plant Physiol 2009, 166(11):1218-1222.
  • [48]Baxter I, Brazelton JN, Yu D, Huang YS, Lahner B, Yakubova E, Li Y, Bergelson J, Borevitz JO, Nordborg M, Vitek O, Salt DE: A coastal cline in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1;1. PLoS Genet 2010, 6:e1001193.
  • [49]Toomajian C, Hu TT, Aranzana MJ, Lister C, Tang C, Zheng H, Zhao K, Calabrese P, Dean C, Nordborg M: A nonparametric test reveals selection for rapid flowering in the Arabidopsis genome. PLoS Biol 2006, 4:e137.
  • [50]Munguía-Rosas MA, Ollerton J, Parra-Tabla V, De-Nova JA: Meta-analysis of phenotypic selection on flowering phenology suggests that early flowering plants are favoured. Ecol Lett 2011, 14:511-521.
  • [51]Valverde F: CONSTANS and the evolutionary origin of photoperiodic timing of flowering. J Exp Bot 2011, 62:2453-2463.
  • [52]Laurie RE, Diwadkar P, Jaudal M, Zhang L, Hecht V, Wen J, Tadege M, Mysore KS, Putterill J, Weller JL, Macknight RC: The medicago FLOWERING LOCUS T homolog, MtFTa1, is a Key regulator of flowering time. Plant Physiol 2011, 156:2207-2224.
  • [53]Pierre J-B, Huguet T, Barre P, Huyghe C, Julier B: Detection of QTLs for flowering date in three mapping populations of the model legume species Medicago truncatula. Theoret Appl Genetics 2008, 117:609-620.
  • [54]Pierre J-B, Bogard M, Herrmann D, Huyghe C, Julier B: A CONSTANS-like gene candidate that could explain most of the genetic variation for flowering date in Medicago truncatula. Mol Breeding 2010, 28:25-35.
  • [55]Yeoh CC, Balcerowicz M, Zhang L, Jaudal M, Brocard L, Ratet P, Putterill J: Fine mapping links the FTa1 flowering time regulator to the dominant Spring1 locus in medicago. PLoS One 2013, 8:e53467.
  • [56]Stanton ML, Roy BA, Thiede DA: Evolution in stressful environments. I. Phenotypic variability, phenotypic selection, and response to selection in five distinct environmental stresses. Evolution 2007, 54:93-111.
  • [57]Triky-Dotan S, Yermiyahu U, Katan J, Gamliel A: Development of crown and root rot disease of tomato under irrigation with saline water. Phytopathology 2005, 95:1438-1444.
  • [58]Bari R, Jones J: Role of plant hormones in plant defence responses. Plant Mol Biol 2009, 69:473-488.
  • [59]Jones JDG, Dangl JL: The plant immune system. Nature 2006, 444:323-329.
  • [60]Seeholzer S, Tsuchimatsu T, Jordan T, Bieri S, Pajonk S, Yang W, Jahoor A, Shimizu KK, Keller B, Schulze-Lefert P: Diversity at the Mla powdery mildew resistance locus from cultivated barley reveals sites of positive selection. Mol Plant Microbe Interact 2010, 23:497-509.
  • [61]Benedito V, Torres Jerez I, Murray J, Andriankaja A, Allen S, Kakar K, Wandrey M, Verdier J, Zuber H, Ott T, Moreau S, Niebel A, Frickey T, Weiller G, He J, Dai X, Zhao P, Tang Y, Udvardi M: A gene expression atlas of the model legume Medicago truncatula. Plant J 2008, 55(3):504-513.
  • [62]Li D, Zhang Y, Hu X, Shen X, Ma L, Su Z, Wang T, Dong J: Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses. Bmc Plant Biol 2011, 11:109. BioMed Central Full Text
  • [63]Kawecki TJ: Accumulation of deleterious mutations and the evolutionary cost of being a generalist. Am Nat 1994, 144:833-838.
  • [64]Bierne N, Welch J, Loire E, Bonhomme F, David P: The coupling hypothesis: why genome scans may fail to map local adaptation genes. Mol Ecol 2011, 20:2044-2072.
  • [65]Hoekstra HE, Coyne JA: The locus of evolution: Evo devo and the genetics of adaptation. Evolution 2007, 61:995-1016.
  • [66]Lande R, Arnold S: The measurement of selection on correlated characters. Evolution 1983, 37:1210-1226.
  • [67]Stinchcombe JR, Rutter MT, Burdick DS, Tiffin P, Rausher MD, Mauricio R: Testing for environmentally induced bias in phenotypic estimates of natural selection: theory and practice. Am Nat 2002, 160:511-523.
  • [68]Dunham JP, Friesen M: A cost-effective method for high-throughput construction of illumina sequencing libraries. Cold Spring Harbor Protocols 2013, 2013(9):820-834. 2013:pdb.prot074187–pdb.prot074187
  • [69]Li H, Durbin R: Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009, 25:1754-1760.
  • [70]McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA: The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010, 20:1297-1303.
  • [71]Team R: R: a language and environment for statistical computing. 2009.
  • [72]Goudet J: HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Mol Ecol Notes 2005, 5:184-186.
  • [73]Storey JD, Tibshirani R: Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 2003, 100:9440-9445.
  • [74]Krishnamurthy N, Brown DP, Kirshner D, Sjölander K: PhyloFacts: an online structural phylogenomic encyclopedia for protein functional and structural classification. Genome Biol 2006, 7:R83. BioMed Central Full Text
  • [75]Datta RS, Meacham C, Samad B, Neyer C, Sjolander K: Berkeley PHOG: PhyloFacts orthology group prediction web server. Nucleic Acids Res 2009, 37(Web Server):W84-W89.
  文献评价指标  
  下载次数:21次 浏览次数:4次