期刊论文详细信息
BMC Genomics
RNA-seq reveals the pan-transcriptomic impact of attenuating the gliotoxin self-protection mechanism in Aspergillus fumigatus
Sean Doyle1  Gary W Jones1  David A Fitzpatrick1  Thomas M Keane2  Rebecca A Owens1  Stephen Hammel1  Grainne O’Keeffe1 
[1] Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland;The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
关键词: Fungal proteomics;    Secondary metabolism;    Transcriptome;    RNA-seq;    Gliotoxin;   
Others  :  1128462
DOI  :  10.1186/1471-2164-15-894
 received in 2014-04-18, accepted in 2014-10-07,  发布年份 2014
PDF
【 摘 要 】

Background

Aspergillus fumigatus produces a number of secondary metabolites, one of which, gliotoxin, has been shown to exhibit anti-fungal activity. Thus, A. fumigatus must be able to protect itself against gliotoxin. Indeed one of the genes in the gliotoxin biosynthetic gene cluster in A. fumigatus, gliT, is required for self-protection against the toxin- however the global self-protection mechanism deployed is unclear. RNA-seq was employed to identify genes differentially regulated upon exposure to gliotoxin in A. fumigatus wild-type and A. fumigatusgliT, a strain that is hypersensitive to gliotoxin.

Results

Deletion of A. fumigatus gliT resulted in altered expression of 208 genes (log2 fold change of 1.5) when compared to A. fumigatus wild-type, of which 175 genes were up-regulated and 33 genes were down-regulated. Expression of 164 genes was differentially regulated (log2 fold change of 1.5) in A. fumigatus wild-type when exposed to gliotoxin, consisting of 101 genes with up-regulated expression and 63 genes with down-regulated expression. Interestingly, a much larger number of genes, 1700, were found to be differentially regulated (log2 fold change of 1.5) in A. fumigatusgliT when challenged with gliotoxin. These consisted of 508 genes with up-regulated expression, and 1192 genes with down-regulated expression. Functional Catalogue (FunCat) classification of differentially regulated genes revealed an enrichment of genes involved in both primary metabolic functions and secondary metabolism. Specifically, genes involved in gliotoxin biosynthesis, helvolic acid biosynthesis, siderophore-iron transport genes and also nitrogen metabolism genes and ribosome biogenesis genes underwent altered expression. It was confirmed that gliotoxin biosynthesis is induced upon exposure to exogenous gliotoxin, production of unrelated secondary metabolites is attenuated in A. fumigatusgliT, while quantitative proteomic analysis confirmed disrupted translation in A. fumigatusgliT challenged with exogenous gliotoxin.

Conclusions

This study presents the first global investigation of the transcriptional response to exogenous gliotoxin in A. fumigatus wild-type and the hyper-sensitive strain, ∆gliT. Our data highlight the global and extensive affects of exogenous gliotoxin on a sensitive strain devoid of a self-protection mechanism and infer that GliT functionality is required for the optimal biosynthesis of selected secondary metabolites in A. fumigatus.

【 授权许可】

   
2014 O’Keeffe et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150223180939717.pdf 3240KB PDF download
Figure 8. 87KB Image download
Figure 7. 116KB Image download
Figure 6. 68KB Image download
Figure 5. 111KB Image download
Figure 4. 125KB Image download
Figure 3. 86KB Image download
Figure 2. 79KB Image download
Figure 1. 127KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Bernardo PH, Brasch N, Chai CLL, Waring P: A novel redox mechanism for the glutathione-dependent reversible uptake of a fungal toxin in cells. J Biol Chem 2003, 278:46549-46555.
  • [2]Schrettl M, Carberry S, Kavanagh K, Haas H, Jones GW, Brien O, Nolan A, Stephens J, Fenelon O, Doyle S: Self-protection against Gliotoxin — a component of the Gliotoxin Biosynthetic Cluster, GliT, completely Protects Aspergillus fumigatus against Exogenous Gliotoxin. PLoS Pathog 2010, 6:e1000952. doi:10.1371/journal.ppat.1000952
  • [3]Gardiner DM, Howlett BJ: Bioinformatic and expression analysis of the putative gliotoxin biosynthetic gene cluster of Aspergillus fumigatus. FEMS Microbiol Lett 2005, 248:241-248.
  • [4]Coleman JJ, Ghosh S, Okoli I, Mylonakis E: Antifungal activity of microbial secondary metabolites. PLoS One 2011, 6:e25321.
  • [5]Carberry S, Molloy E, Hammel S, O’Keeffe G, Jones GW, Kavanagh K, Doyle S: Gliotoxin effects on fungal growth: mechanisms and exploitation. Fungal Genet Biol 2012, 49:302-312.
  • [6]Gallagher L, Owens RA, Dolan SK, O’Keeffe G, Schrettl M, Kavanagh K, Jones GW, Doyle S: The Aspergillus fumigatus protein GliK protects against oxidative stress and is essential for gliotoxin biosynthesis. Eukaryot Cell 2012, 11:1226-1238.
  • [7]Shim H, Sup J, Kim J, Won S, Kwon HJ: Discovery of gliotoxin as a new small molecule targeting thioredoxin redox system. Biochem Biophys Res Commun 2007, 359:523-528.
  • [8]Gardiner DM, Cozijnsen AJ, Wilson LM, Pedras MSC, Howlett BJ: The sirodesmin biosynthetic gene cluster of the plant pathogenic fungus Leptosphaeria maculans. Mol Microbiol 2004, 53:1307-1318.
  • [9]Cramer RA, Gamcsik MP, Brooking RM, Najvar LK, Kirkpatrick WR, Patterson TF, Balibar CJ, Graybill JR, Perfect JR, Abraham SN, Steinbach WJ: Disruption of a nonribosomal peptide synthetase in Aspergillus fumigatus eliminates gliotoxin production. Eukaryot Cell 2006, 5:972-980.
  • [10]Bok JW, Chung D, Balajee SA, Marr KA, Andes D, Nielsen KF, Frisvad JC, Kirby KA, Keller NP: GliZ, a transcriptional regulator of Gliotoxin Biosynthesis, contributes to Aspergillus fumigatus Virulence. Infect Immun 2006, 74:6761-6768.
  • [11]Forseth RR, Fox EM, Chung D, Howlett BJ, Keller NP, Schroeder FC: Identification of cryptic products of the gliotoxin gene cluster using NMR-based comparative metabolomics and a model for gliotoxin biosynthesis. J Am Chem Soc 2011, 133:9678-9681.
  • [12]Balibar CJ, Walsh CT: GliP, a multimodular nonribosomal peptide synthetase in Aspergillus fumigatus, makes the diketopiperazine scaffold of gliotoxin. Biochemistry 2006, 45:15029-15038.
  • [13]Gardiner DM, Jarvis RS, Howlett BJ: The ABC transporter gene in the sirodesmin biosynthetic gene cluster of Leptosphaeria maculans is not essential for sirodesmin production but facilitates self-protection. Fungal Genet Biol 2005, 42:257-263.
  • [14]Wang D, Toyotome T, Muraosa Y, Watanabe A, Wuren T, Bunsupa S, Aoyagi K, Yamazaki M, Takino M, Kamei K: GliA in Aspergillus fumigatus is required for its tolerance to gliotoxin and affects the amount of extracellular and intracellular gliotoxin. Med Mycol 2014, 52:506-518.
  • [15]Scharf D, Remme N: Transannular disulfide formation in gliotoxin biosynthesis and its role in self-resistance of the human pathogen Aspergillus fumigatus. J Am Chem Soc 2010, 132:10136-10141.
  • [16]Qin Z, Baker AT, Raab A, Huang S, Wang T, Yu Y, Jaspars M, Secombes CJ, Deng H: The fish pathogen Yersinia ruckeri produces holomycin and uses an RNA methyltransferase for self-resistance. J Biol Chem 2013, 288:14688-14697.
  • [17]Li B, Walsh C: Streptomyces clavuligerus HlmI is an intramolecular disulfide-forming dithiol oxidase in holomycin biosynthesis. Biochemistry 2011, 50:4615-4622.
  • [18]Gibbons JG, Beauvais A, Beau R, McGary KL, Latgé J-P, Rokas A: Global transcriptome changes underlying colony growth in the opportunistic human pathogen Aspergillus fumigatus. Eukaryot Cell 2012, 11:68-78.
  • [19]Yu J, Fedorova ND, Montalbano BG, Bhatnagar D, Cleveland TE, Bennett JW, Nierman WC: Tight control of mycotoxin biosynthesis gene expression in Aspergillus flavus by temperature as revealed by RNA-Seq. FEMS Microbiol Lett 2011, 322:145-149.
  • [20]Dhingra S, Andes D, Calvo AM: VeA regulates conidiation, gliotoxin production, and protease activity in the opportunistic human pathogen Aspergillus fumigatus. Eukaryot Cell 2012, 11:1531-1543.
  • [21]Amich J, Schafferer L, Haas H, Krappmann S: Regulation of sulphur assimilation is essential for virulence and affects iron homeostasis of the human-pathogenic mould Aspergillus fumigatus. PLoS Pathog 2013, 9:e1003573.
  • [22]Dhingra S, Lind AL, Lin H-C, Tang Y, Rokas A, Calvo AM: The fumagillin gene cluster, an example of hundreds of genes under veA control in Aspergillus fumigatus. PLoS One 2013, 8:e77147.
  • [23]Ruepp A, Zollner A, Maier D, Albermann K, Hani J, Mokrejs M, Tetko I, Güldener U, Mannhaupt G, Münsterkötter M, Mewes HW: The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res 2004, 32:5539-5545.
  • [24]Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28:27-30.
  • [25]Mitsuguchi H, Seshime Y, Fujii I, Shibuya M, Ebizuka Y, Kushiro T: Biosynthesis of steroidal antibiotic fusidanes: functional analysis of oxidosqualene cyclase and subsequent tailoring enzymes from Aspergillus fumigatus. J Am Chem Soc 2009, 131:6402-6411.
  • [26]Perrin RM, Fedorova ND, Bok JW, Cramer RA, Wortman JR, Kim HS, Nierman WC, Keller NP: Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. PLoS Pathog 2007, 3:e50.
  • [27]Wiemann P, Guo C-J, Palmer JM, Sekonyela R, Wang CCC, Keller NP: Prototype of an intertwined secondary-metabolite supercluster. Proc Natl Acad Sci U S A 2013, 110:17065-17070.
  • [28]Maiya S, Grundmann A, Li X, Li S-M, Turner G: Identification of a hybrid PKS/NRPS required for pseurotin A biosynthesis in the human pathogen Aspergillus fumigatus. Chembiochem 2007, 8:1736-1743.
  • [29]Maiya S, Grundmann A, Li S-M, Turner G: The fumitremorgin gene cluster of Aspergillus fumigatus: identification of a gene encoding brevianamide F synthetase. Chembiochem 2006, 7:1062-1069.
  • [30]Lin H-C, Chooi Y-H, Dhingra S, Xu W, Calvo AM, Tang Y: The fumagillin biosynthetic gene cluster in Aspergillus fumigatus encodes a cryptic terpene cyclase involved in the formation of β-trans-bergamotene. J Am Chem Soc 2013, 135:4616-4619.
  • [31]Carberry S, Neville CM, Kavanagh KA, Doyle S: Analysis of major intracellular proteins of Aspergillus fumigatus by MALDI mass spectrometry: identification and characterisation of an elongation factor 1B protein with glutathione transferase activity. Biochem Biophys Res Commun 2006, 341:1096-1104.
  • [32]Bok JW, Keller NP: LaeA, a Regulator of Secondary Metabolism in Aspergillus spp. Eukaryot Cell 2004, 3:527-535.
  • [33]Lodeiro S, Xiong Q, Wilson WK, Ivanova Y, Smith ML, May GS, Matsuda SPT: Protostadienol biosynthesis and metabolism in the pathogenic fungus Aspergillus fumigatus. Org Lett 2009, 11:1241-1244.
  • [34]Park H-S, Bayram O, Braus GH, Kim SC, Yu J-H: Characterization of the velvet regulators in Aspergillus fumigatus. Mol Microbiol 2012, 86:937-953.
  • [35]Haas H: Iron - a key nexus in the Virulence of Aspergillus fumigatus. Front Microbiol 2012, 3:28.
  • [36]Schrettl M, Bignell E, Kragl C, Sabiha Y: Distinct roles for intra-and extracellular siderophores during Aspergillus fumigatus infection. PLoS Pathog 2007, 3:1195-1207.
  • [37]Yasmin S, Alcazar-Fuoli L, Gründlinger M, Puempel T, Cairns T, Blatzer M, Lopez JF, Grimalt JO, Bignell E, Haas H: Mevalonate governs interdependency of ergosterol and siderophore biosyntheses in the fungal pathogen Aspergillus fumigatus. Proc Natl Acad Sci U S A 2012, 109:E497-E504.
  • [38]Eisendle M, Oberegger H, Zadra I, Haas H: The siderophore system is essential for viability of Aspergillus nidulans: functional analysis of two genes encoding l-ornithine N 5-monooxygenase (sidA) and a non-ribosomal peptide synthetase (sidC). Mol Microbiol 2003, 49:359-375.
  • [39]Arnaud MB, Chibucos MC, Costanzo MC, Crabtree J, Inglis DO, Lotia A, Orvis J, Shah P, Skrzypek MS, Binkley G, Miyasato SR, Wortman JR, Sherlock G: The Aspergillus Genome Database, a curated comparative genomics resource for gene, protein and sequence information for the Aspergillus research community. Nucleic Acids Res 2010, 38(Database issue):D420-D427.
  • [40]Hartmann T, Cairns TC, Olbermann P, Morschhäuser J, Bignell EM, Krappmann S: Oligopeptide transport and regulation of extracellular proteolysis are required for growth of Aspergillus fumigatus on complex substrates but not for virulence. Mol Microbiol 2011, 82:917-935.
  • [41]Bergmann A, Hartmann T, Cairns T, Bignell EM, Krappmann S: A regulator of Aspergillus fumigatus extracellular proteolytic activity is dispensable for virulence. Infect Immun 2009, 77:4041-4050.
  • [42]Nishida H: Conservation of nucleosome positions in duplicated and orthologous gene pairs. ScientificWorldJournal 2012, 2012:298174.
  • [43]Kupfahl C, Heinekamp T: The gliP gene of Aspergillus fumigatus results in loss of gliotoxin production but has no effect on virulence of the fungus in a low‒dose mouse infection model. Mol Microbiol 2006, 62:292-302.
  • [44]Sekonyela R, Palmer JM, Bok J-W, Jain S, Berthier E, Forseth R, Schroeder F, Keller NP: RsmA regulates Aspergillus fumigatus gliotoxin cluster metabolites including cyclo(L-Phe-L-Ser), a potential new diagnostic marker for invasive aspergillosis. PLoS One 2013, 8:e62591.
  • [45]Li B, Forseth RR, Bowers AA, Schroeder FC, Walsh CT: A backup plan for self-protection: S-methylation of holomycin biosynthetic intermediates in Streptomyces clavuligerus. Chembiochem 2012, 13:2521-2526.
  • [46]Dolan SK, Owens RA, O'Keeffe G, Hammel S, Fitzpatrick DA, Jones GW, Doyle S: Regulation of nonribosomal peptide synthesis: bis -thiomethylation attenuates gliotoxin biosynthesis in Aspergillus fumigatus. Chem Biol 2014, 21:999-1012.
  • [47]Sanchez JF, Somoza AD, Keller NP, Wang CCC: Advances in Aspergillus secondary metabolite research in the post-genomic era. Nat Prod Rep 2012, 29:351-371.
  • [48]Kato N, Suzuki H, Takagi H, Asami Y, Kakeya H, Uramoto M, Usui T, Takahashi S, Sugimoto Y, Osada H: Identification of cytochrome P450s required for fumitremorgin biosynthesis in Aspergillus fumigatus. Chembiochem 2009, 10:920-928.
  • [49]Bok J, Balajee S, Marr K: LaeA, a regulator of morphogenetic fungal virulence factors. Eukaryot Cell 2005, 4:1574-1582.
  • [50]Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon N-J, Keller NP, Yu J-H, Braus GH: VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 2008, 320:1504-1506.
  • [51]Wallner A, Blatzer M, Schrettl M, Sarg B, Lindner H, Haas H: Ferricrocin, a siderophore involved in intra- and transcellular iron distribution in Aspergillus fumigatus. Appl Environ Microbiol 2009, 75:4194-4196.
  • [52]Xu XM, Møller SG: Iron-sulfur clusters: biogenesis, molecular mechanisms, and their functional significance. Antioxid Redox Signal 2011, 15:271-307.
  • [53]Rutherford JC, Ojeda L, Balk J, Mühlenhoff U, Lill R, Winge DR: Activation of the iron regulon by the yeast Aft1/Aft2 transcription factors depends on mitochondrial but not cytosolic iron-sulfur protein biogenesis. J Biol Chem 2005, 280:10135-10140.
  • [54]Sipos K, Lange H, Fekete Z, Ullmann P, Lill R, Kispal G: Maturation of cytosolic iron-sulfur proteins requires glutathione. J Biol Chem 2002, 277:26944-26949.
  • [55]Kumar C, Igbaria A, D’Autreaux B, Planson A-G, Junot C, Godat E, Bachhawat AK, Delaunay-Moisan A, Toledano MB: Glutathione revisited: a vital function in iron metabolism and ancillary role in thiol-redox control. EMBO J 2011, 30:2044-2056.
  • [56]Schrettl M, Beckmann N, Varga J, Heinekamp T, Jacobsen ID, Jöchl C, Moussa TA, Wang S, Gsaller F, Blatzer M, Werner ER, Niermann WC, Brakhage AA, Haas H: HapX-mediated adaption to iron starvation is crucial for virulence of Aspergillus fumigatus. PLoS Pathog 2010, 6:e1001124.
  • [57]Schrettl M, Kim HS, Eisendle M, Kragl C, Nierman WC, Heinekamp T, Werner ER, Jacobsen I, Illmer P, Yi H, Brakhage AA, Haas H: SreA-mediated iron regulation in Aspergillus fumigatus. Mol Microbiol 2008, 70:27-43.
  • [58]Lee IR, Morrow CA, Fraser JA: Nitrogen regulation of virulence in clinically prevalent fungal pathogens. FEMS Microbiol Lett 2013, 345:77-84.
  • [59]Wong KH, Hynes MJ, Davis MA: Recent advances in nitrogen regulation: a comparison between Saccharomyces cerevisiae and filamentous fungi. Eukaryot Cell 2008, 7:917-925.
  • [60]Priebe S, Linde J, Albrecht D, Guthke R, Brakhage AA: FungiFun: A web-based application for functional categorization of fungal genes and proteins. Fungal Genet Biol 2011, 48:353-358.
  • [61]Burns C, Geraghty R, Neville C, Murphy A, Kavanagh K, Doyle S: Identification, cloning, and functional expression of three glutathione transferase genes from Aspergillus fumigatus. Fungal Genet Biol 2005, 42:319-327.
  • [62]O’Hanlon KA, Cairns T, Stack D, Schrettl M, Bignell EM, Kavanagh K, Miggin SM, O’Keeffe G, Larsen TO, Doyle S: Targeted disruption of nonribosomal peptide synthetase pes3 augments the virulence of Aspergillus fumigatus. Infect Immun 2011, 79:3978-3992.
  • [63]Collins C, Keane TM, Turner DJ, O’Keeffe G, Fitzpatrick DA, Doyle S: Genomic and proteomic dissection of the ubiquitous plant pathogen, Armillaria mellea: toward a new infection model system. J Proteome Res 2013, 12:2552-2570.
  • [64]Cox J, Mann M: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 2008, 26:1367-1372.
  文献评价指标  
  下载次数:33次 浏览次数:8次