期刊论文详细信息
BMC Genomics
Joint genetic analysis of hippocampal size in mouse and human identifies a novel gene linked to neurodegenerative disease
Reinmar Hager3  Paul M Thompson4  Sarah E Medland6  Thomas E Nichols1  Derrek P Hibar7  Jason L Stein4  Lu Lu5  Robert W Williams2  David G Ashbrook3 
[1]Department of Statistics & Warwick Manufacturing Group, The University of Warwick, Coventry CV4 7AL, UK
[2]University of Tennessee Health Science Center, Memphis, TN 38163, USA
[3]Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
[4]Department of Neurology, Laboratory of Neuro Imaging, UCLA School of Medicine, Los Angeles, CA 90095-1769, USA
[5]Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
[6]Genetic Epidemiology Laboratory, Queensland Institute of Medical Research Berghofer, Brisbane, Australia
[7]Institute for Neuroimaging and Informatics, Imaging Genetics Center, Keck School of Medicine, University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90033, USA
关键词: BXD;    MGST3;    Hippocampus;    Comparative analysis;   
Others  :  1139153
DOI  :  10.1186/1471-2164-15-850
 received in 2014-04-07, accepted in 2014-09-29,  发布年份 2014
PDF
【 摘 要 】

Background

Variation in hippocampal volume has been linked to significant differences in memory, behavior, and cognition among individuals. To identify genetic variants underlying such differences and associated disease phenotypes, multinational consortia such as ENIGMA have used large magnetic resonance imaging (MRI) data sets in human GWAS studies. In addition, mapping studies in mouse model systems have identified genetic variants for brain structure variation with great power. A key challenge is to understand how genetically based differences in brain structure lead to the propensity to develop specific neurological disorders.

Results

We combine the largest human GWAS of brain structure with the largest mammalian model system, the BXD recombinant inbred mouse population, to identify novel genetic targets influencing brain structure variation that are linked to increased risk for neurological disorders. We first use a novel cross-species, comparative analysis using mouse and human genetic data to identify a candidate gene, MGST3, associated with adult hippocampus size in both systems. We then establish the coregulation and function of this gene in a comprehensive systems-analysis.

Conclusions

We find that MGST3 is associated with hippocampus size and is linked to a group of neurodegenerative disorders, such as Alzheimer’s.

【 授权许可】

   
2014 Ashbrook et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150321053037918.pdf 308KB PDF download
Figure 1. 45KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Stein JL, Medland SE, Vasquez AA, Hibar DP, Senstad RE, Winkler AM, Toro R, Appel K, Bartecek R, Bergmann Ø, Bernard M, Brown AA, Cannon DM, Chakravarty MM, Christoforou A, Domin M, Grimm O, Hollinshead M, Holmes AJ, Homuth G, Hottenga J-J, Langan C, Lopez LM, Hansell NK, Hwang KS, Kim S, Laje G, Lee PH, Liu X, Loth E, et al.: Identification of common variants associated with human hippocampal and intracranial volumes. Nat Genet 2012, 44:552-561.
  • [2]Peirce JL, Chesler EJ, Williams RW, Lu L: Genetic architecture of the mouse hippocampus: identification of gene loci with selective regional effects. Genes Brain Behav 2003, 2:238-252.
  • [3]Peper JS, Brouwer RM, Boomsma DI, Kahn RS, Hulshoff Pol HE: Genetic influences on human brain structure: a review of brain imaging studies in twins. Hum Brain Mapp 2007, 28:464-473.
  • [4]Lu L, Airey DC, Williams RW: Complex trait analysis of the hippocampus: mapping and biometric analysis of two novel gene loci with specific effects on hippocampal structure in mice. J Neurosci 2001, 21:3503-3514.
  • [5]Fjell AM, Westlye LT, Amlien I, Espeseth T, Reinvang I, Raz N, Agartz I, Salat DH, Greve DN, Fischl B, Dale AM, Walhovd KB: Minute effects of sex on the aging brain: a multisample magnetic resonance imaging study of healthy aging and Alzheimer’s disease. J Neurosci 2009, 29:8774-8783.
  • [6]Barnett JH, Salmond CH, Jones PB, Sahakian BJ: Cognitive reserve in neuropsychiatry. Psychol Med 2006, 36:1053-1064.
  • [7]Nithianantharajah J, Hannan AJ: The neurobiology of brain and cognitive reserve: mental and physical activity as modulators of brain disorders. Prog Neurobiol 2009, 89:369-382.
  • [8]Biundo R, Calabrese M, Weis L, Facchini S, Ricchieri G, Gallo P, Antonini A: Anatomical correlates of cognitive functions in early Parkinson’s disease patients. PLoS One 2013, 8:e64222.
  • [9]Bonner-Jackson A, Long JD, Westervelt H, Tremont G, Aylward E, Paulsen JS: Cognitive reserve and brain reserve in prodromal Huntington’s Disease. J Int Neuropsychol Soc 2013, 19:739-750.
  • [10]Braskie MN, Thompson PM: Understanding cognitive deficits in Alzheimer’s disease based on neuroimaging findings. Trends Cogn Sci 2013, 17:510-516.
  • [11]Geuze E, Vermetten E, Bremner JD: MR-based in vivo hippocampal volumetrics: 2. Findings in neuropsychiatric disorders. Mol Psychiatry 2005, 10:160-184.
  • [12]Frodl T, Meisenzahl EM, Zetzsche T, Born C, Groll C, Jäger M, Leinsinger G, Bottlender R, Hahn K, Möller H-J: Hippocampal changes in patients with a first episode of major depression. Am J Psychiatry 2002, 159:1112-1118.
  • [13]Videbech P, Ravnkilde B, Ph D: Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry 2004, 161:1957-1966.
  • [14]Sheline YI: Depression and the hippocampus: cause or effect? Biol Psychiatry 2011, 70:308-309.
  • [15]Sexton CE, Le Masurier M, Allan CL, Jenkinson M, McDermott L, Kalu UG, Herrmann LL, Bradley KM, Mackay CE, Ebmeier KP: Magnetic resonance imaging in late-life depression: vascular and glucocorticoid cascade hypotheses. Br J Psychiatry 2012, 201:46-51.
  • [16]Sawyer K, Corsentino E, Sachs-Ericsson N, Steffens DC: Depression, hippocampal volume changes, and cognitive decline in a clinical sample of older depressed outpatients and non-depressed controls. Aging Ment Health 2012, 16:753-762.
  • [17]Den Heijer T, Geerlings MI, Hoebeek FE, Hofman A, Koudstaal PJ, Breteler MMB: Use of hippocampal and amygdalar volumes on magnetic resonance imaging to predict dementia in cognitively intact elderly people. Arch Gen Psychiatry 2006, 63:57-62.
  • [18]Adriano F, Caltagirone C, Spalletta G: Hippocampal volume reduction in first-episode and chronic schizophrenia: a review and meta-analysis. Neuroscientist 2012, 18:180-200.
  • [19]Mackay TFC, Stone EA, Ayroles JF: The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 2009, 10:565-577.
  • [20]Ackert-Bicknell CL, Karasik D, Li Q, Smith RV, Hsu Y-H, Churchill GA, Paigen BJ, Tsaih S-W: Mouse BMD quantitative trait loci show improved concordance with human genome-wide association loci when recalculated on a new, common mouse genetic map. J Bone Miner Res 2010, 25:1808-1820.
  • [21]Poot M, Badea A, Williams RW, Kas MJ: Identifying human disease genes through cross-species gene mapping of evolutionary conserved processes. PLoS One 2011, 6:e18612.
  • [22]Koutnikova H, Laakso M, Lu L, Combe R, Paananen J, Kuulasmaa T, Kuusisto J, Häring H-U, Hansen T, Pedersen O, Smith U, Hanefeld M, Williams RW, Auwerx J: Identification of the UBP1 locus as a critical blood pressure determinant using a combination of mouse and human genetics. PLoS Genet 2009, 5:e1000591.
  • [23]De Mooij-van Malsen AJG, van Lith HA, Oppelaar H, Hendriks J, de Wit M, Kostrzewa E, Breen G, Collier DA, Olivier B, Kas MJ: Interspecies trait genetics reveals association of Adcy8 with mouse avoidance behavior and a human mood disorder. Biol Psychiatry 2009, 66:1123-1130.
  • [24]Leduc MS, Lyons M, Darvishi K, Walsh K, Sheehan S, Amend S, Cox A, Orho-Melander M, Kathiresan S, Paigen B, Korstanje R: The mouse QTL map helps interpret human genome-wide association studies for HDL cholesterol. J Lipid Res 2011, 52:1139-1149.
  • [25]Schofield PN, Hoehndorf R, Gkoutos GV: Mouse genetic and phenotypic resources for human genetics. Hum Mutat 2012, 33:826-836.
  • [26]Thompson PM, Stein JL, Medland SE, Hibar DP, Vasquez AA, Renteria ME, Toro R, Jahanshad N, Schumann G, Franke B, Wright MJ, Martin NG, Agartz I, Alda M, Alhusaini S, Almasy L, Almeida J, Alpert K, Andreasen NC, Andreassen OA, Apostolova LG, Appel K, Armstrong NJ, Aribisala B, Bastin ME, Bauer M, Bearden CE, Bergmann O, Binder EB, Blangero J, et al.: The ENIGMA consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav 2014. In Press
  • [27]Liu JZ, McRae AF, Nyholt DR, Medland SE, Wray NR, Brown KM, Hayward NK, Montgomery GW, Visscher PM, Martin NG, Macgregor S: A versatile gene-based test for genome-wide association studies. Am J Hum Genet 2010, 87:139-145.
  • [28]Plaisier SB, Taschereau R, Wong JA, Graeber TG: Rank-rank hypergeometric overlap: identification of statistically significant overlap between gene-expression signatures. Nucleic Acids Res 2010, 38:e169.
  • [29]Hager R, Lu L, Rosen GD, Williams RW: Genetic architecture supports mosaic brain evolution and independent brain-body size regulation. Nat Commun 2012, 3(May):1079.
  • [30]GeneNetwork. http://www.genenetwork.org/ webcite
  • [31]Allocco DJ, Kohane IS, Butte AJ: Quantifying the relationship between co-expression, co-regulation and gene function. BMC Bioinformatics 2004, 5:18. BioMed Central Full Text
  • [32]Van Dam S, Cordeiro R, Craig T, van Dam J, Wood SH, de Magalhães JP: GeneFriends: an online co-expression analysis tool to identify novel gene targets for aging and complex diseases. BMC Genomics 2012, 13:535. BioMed Central Full Text
  • [33]Xu P-T, Li Y-J, Qin X-J, Scherzer CR, Xu H, Schmechel DE, Hulette CM, Ervin J, Gullans SR, Haines J, Pericak-Vance MA, Gilbert JR: Differences in apolipoprotein E3/3 and E4/4 allele-specific gene expression in hippocampus in Alzheimer disease. Neurobiol Dis 2006, 21:256-575.
  • [34]Fetissov SO, Schröder O, Jakobsson P-JP-JP-J, Samuelsson B, Haeggström JZ, Hökfelt T: Expression of microsomal glutathione S-transferase type 3 mRNA in the rat nervous system. Neuroscience 2002, 115:891-897.
  • [35]Spargo E, Everall IP, Lantos PL: Neuronal loss in the hippocampus in Huntington’s disease: a comparison with HIV infection. J Neurol Neurosurg Psychiatry 1993, 56:487-491.
  • [36]Bohanna I, Georgiou-Karistianis N, Hannan AJ, Egan GF: Magnetic resonance imaging as an approach towards identifying neuropathological biomarkers for Huntington’s disease. Brain Res Rev 2008, 58:209-225.
  • [37]Rosas HD, Koroshetz WJ, Chen YI, Skeuse C, Vangel M, Cudkowicz ME, Caplan K, Marek K, Seidman LJ, Makris N, Jenkins BG, Goldstein JM: Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 2003, 60:1615-1620.
  • [38]Frisoni GB, Fox NC, Jack CR, Scheltens P, Thompson PM: The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 2010, 6:67-77.
  • [39]Camicioli R, Moore MM, Kinney A, Corbridge E, Glassberg K, Kaye JA: Parkinson’s disease is associated with hippocampal atrophy. Mov Disord 2003, 18:784-790.
  • [40]Pereira JB, Junqué C, Bartrés-Faz D, Ramírez-Ruiz B, Marti M-J, Tolosa E: Regional vulnerability of hippocampal subfields and memory deficits in Parkinson’s disease. Hippocampus 2013, 23:720-728.
  • [41]Zhang Y, Zhang J, Xu J, Wu X, Zhang Y, Feng H, Wang J, Jiang T: Cortical gyrification reductions and subcortical atrophy in Parkinson’s disease. Mov Disord 2014, 29:122-126.
  • [42]Deheshi S, Pasqualotto BA, Rintoul GL: Mitochondrial trafficking in neuropsychiatric diseases. Neurobiol Dis 2013, 51:66-71.
  • [43]Chaturvedi RK, Flint Beal M: Mitochondrial diseases of the brain. Free Radic Biol Med 2013, 63:1-29.
  • [44]Ridge PG, Koop A, Maxwell TJ, Bailey MH, Swerdlow RH, Kauwe JSK, Honea RA: Mitochondrial haplotypes associated with biomarkers for Alzheimer’s disease. PLoS One 2013, 8:e74158.
  • [45]Higgins LG, Hayes JD: Mechanisms of induction of cytosolic and microsomal glutathione transferase (GST) genes by xenobiotics and pro-inflammatory agents. Drug Metab Rev 2011, 43:92-137.
  • [46]Jakobsson PJ, Mancini JA, Riendeau D, Ford-Hutchinson AW: Identification and characterization of a novel microsomal enzyme with glutathione-dependent transferase and peroxidase activities. J Biol Chem 1997, 272:22934-22939.
  • [47]Amor S, Peferoen LAN, Vogel DYS, Breur M, van der Valk P, Baker D, van Noort JM: Inflammation in neurodegenerative diseases–an update. Immunology 2014, 142:151-166.
  • [48]Schröder O, Sjöström M, Qiu H, Stein J, Jakobsson PJ, Haeggström JZ: Molecular and catalytic properties of three rat leukotriene C(4) synthase homologs. Biochem Biophys Res Commun 2003, 312:271-276.
  • [49]Schröder O, Sjöström M, Qiu H, Jakobsson P-J, Haeggström JZ: Microsomal glutathione S-transferases: selective up-regulation of leukotriene C4 synthase during lipopolysaccharide-induced pyresis. Cell Mol Life Sci 2005, 62:87-94.
  • [50]Python. https://www.python.org webcite
  • [51]Novak NM, Stein JL, Medland SE, Hibar DP, Thompson PM, Toga AW: EnigmaVis: online interactive visualization of genome-wide association studies of the enhancing neuroImaging genetics through meta-analysis (ENIGMA) consortium. Twin Res Hum Genet 2012, 15:414-418.
  • [52]MammalHom. http://depts.washington.edu/l2l/mammalhom.html webcite
  • [53]Mouse Genome Informatics. http://www.informatics.jax.org/ webcite
  • [54]HomoloGene. http://www.ncbi.nlm.nih.gov/homologene webcite
  • [55]R Core Team: R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2013.
  • [56]Bacanu SA, Devlin B, Roeder K: The power of genomic control. Am J Hum Genet 2000, 66:1933-1944.
  • [57]Rosenblatt JD, Stein JL: RRHO: Test overlap using the Rank-Rank Hypergeometric test. 2013. R package version 1.0.0; http://www.bioconductor.org/packages/release/bioc/html/RRHO.html webcite
  • [58]Wang J, Williams RW, Manly KF: WebQTL: web-based complex trait analysis. Neuroinformatics 2003, 1:299-308.
  • [59]Mulligan MK, Wang X, Adler AL, Mozhui K, Lu L, Williams RW: Complex control of GABA(A) receptor subunit mRNA expression: variation, covariation, and genetic regulation. PLoS One 2012, 7:e34586.
  • [60]Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2008, 4:44-57.
  • [61]Huang DW, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009, 37:1-13.
  • [62]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 2000, 25:25-29.
  • [63]Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28:27-30.
  • [64]Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, Bernard T, Binns D, Bork P, Burge S, de Castro E, Coggill P, Corbett M, Das U, Daugherty L, Duquenne L, Finn RD, Fraser M, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, et al.: InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 2012, 40:D306-D312.
  • [65]Edgar R, Domrachev M, Lash AE: Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002, 30:207-210.
  • [66]Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A: NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res 2013, 41(Database issue):D991-D995.
  • [67]Chesler EJ, Wang J, Lu L, Qu Y, Manly KF, Williams RW: Genetic correlates of gene expression in recombinant inbred strains: a relational model system to explore neurobehavioral phenotypes. Neuroinformatics 2003, 1:343-357.
  • [68]Gray KA, Daugherty LC, Gordon SM, Seal RL, Wright MW, Bruford EA: Genenames.org: the HGNC resources in 2013. Nucleic Acids Res 2013, 41(Database):D545-D552.
  • [69]HGNC Database. http://www.genenames.org/ webcite
  文献评价指标  
  下载次数:3次 浏览次数:9次