期刊论文详细信息
BMC Research Notes
Genetic polymorphisms in warfarin and tacrolimus-related genes VKORC1, CYP2C9 and CYP3A5 in the Greek-Cypriot population
Constantinos Deltas1  Konstantinos Voskarides1  Stephanie Chrysanthou1  Despina Hadjipanagi1 
[1] Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
关键词: Population genetics;    Pharmacogenetics;    Greek-Cypriots;    Cyprus;    VKORC1;    CYP3A5;    CYP2C9;   
Others  :  1134363
DOI  :  10.1186/1756-0500-7-123
 received in 2013-05-09, accepted in 2014-03-01,  发布年份 2014
PDF
【 摘 要 】

Background

Two variants in the gene encoding the cytochrome P450 2C9 enzyme (CYP2C9) are considered the most significant genetic risk factors associated with bleeding after warfarin prescription. A variant in the vitamin K epoxide reductase (VKORC1) has been also associated by several studies with warfarin response. Another variant in the P450 3A5 enzyme (CYP3A5) gene is known to affect the metabolism of many drugs, including tacrolimus.

Findings

We conducted a population genetic study in 148 unrelated healthy Greek-Cypriot volunteers (through PCR-RFLP assays), in order to determine the frequencies of the above pharmacogenetics variants and to compare allele frequencies with those in other major ethnic groups. The allele frequencies of CYP2C9*2, CYP2C9*3 and CYP3A5*3 were found to be 0.162, 0.112 and 0.943 respectively, whereas VKORC1 - 1639A was 0.534. The latter frequency differs significantly when compared with Caucasians, Asians and Africans (p < 0.001) and is still significant when compared with the geographically and culturally closely related to Greek-Cypriots, Hellenes of Greece (p = 0.01). Interestingly ~18% of our population are carriers of four or three risk alleles regarding warfarin sensitivity, therefore they have a high predisposition for bleeding after taking high or even normal warfarin doses.

Conclusions

Our data show no significant difference in the frequency of CYP2C9 and CYP3A5 allelic variants when compared to the Caucasian population, but differ significantly when compared with Africans and Asians (p < 0.001). Also, the frequency of variant VKORC1 - 1639A differs between Greek-Cypriots and every other population we compared. Finally, about 1/5 Greek-Cypriots carry three or four risk alleles and ~50% of them carry at least two independent risk alleles regarding warfarin sensitivity, a potentially high risk for over-anticoagulation.

【 授权许可】

   
2014 Hadjipanagi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150305173533955.pdf 176KB PDF download
【 参考文献 】
  • [1]Ingelman-Sundberg M: Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol Sci 2004, 25:193-200.
  • [2]Aithal GP, Day CP, Kesteven PJ, Daly AK: Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 1999, 353:717-719.
  • [3]Yuan HY, Chen JJ, Lee MT, Wung JC, Chen YF, Charng MJ, Lu MJ, Hung CR, Wei CY, Chen CH, Wu JY, Chen YT: A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum Mol Genet 2005, 14:1745-1751.
  • [4]Lee CR, Goldstein JA, Pieper JA: Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics 2002, 12:251-263.
  • [5]Miners JO, Birkett DJ: Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 1998, 45:525-538.
  • [6]Higashi MK, Veenstra DL, Kondo LM, Wittkowsky AK, Srinouanprachanh SL, Farin FM, Rettie AE: Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA 2002, 287:1690-1698.
  • [7]Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP, Wood P, Kesteven P, Daly AK, Kamali F: The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 2005, 106:2329-2333.
  • [8]Tham LS, Goh BC, Nafziger A, Guo JY, Wang LZ, Soong R, Lee SC: A warfarin-dosing model in Asians that uses single-nucleotide polymorphisms in vitamin K epoxide reductase complex and cytochrome P450 2C9. Clin Pharmacol Ther 2006, 80:346-355.
  • [9]Lamba JK, Lin YS, Schuetz EG, Thummel KE: Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 2002, 54:1271-1294.
  • [10]Barry A, Levine M: A systematic review of the effect of CYP3A5 genotype on the apparent oral clearance of tacrolimus in renal transplant recipients. Ther Drug Monit 2010, 32:708-714.
  • [11]Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, Watkins PB, Daly A, Wrighton SA, Hall SD, Maurel P, Relling M, Brimer C, Yasuda K, Venkataramanan R, Strom S, Thummel K, Boguski MS, Schuetz E: Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001, 27:383-391.
  • [12]Kurose K, Sugiyama E, Saito Y: Population differences in major functional polymorphisms of pharmacokinetics/pharmacodynamics-related genes in Eastern Asians and Europeans: implications in the clinical trials for novel drug development. Drug Metab Pharmacokinet 2012, 27:9-54.
  • [13]Miller SA, Dykes DD, Polesky HF: A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988, 16:1215.
  • [14]Montes R, Ruiz de Gaona E, Martinez-Gonzalez MA, Alberca I, Hermida J: The c.-1639G > A polymorphism of the VKORC1 gene is a major determinant of the response to acenocoumarol in anticoagulated patients. Br J Haematol 2006, 133:183-187.
  • [15]Bae JW, Kim HK, Kim JH, Yang SI, Kim MJ, Jang CG, Park YS, Lee SY: Allele and genotype frequencies of CYP2C9 in a Korean population. Br J Clin Pharmacol 2005, 60:418-422.
  • [16]Katsakiori PF, Papapetrou EP, Goumenos DS, Nikiforidis GC, Flordellis CS: Tacrolimus and 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors: An interaction study in CYP3A5 non-expressors, renal transplant recipients. Indian J Pharmacol 2011, 43:385-388.
  • [17]Arvanitidis K, Ragia G, Iordanidou M, Kyriaki S, Xanthi A, Tavridou A, Manolopoulos VG: Genetic polymorphisms of drug-metabolizing enzymes CYP2D6, CYP2C9, CYP2C19 and CYP3A5 in the Greek population. Fundam Clin Pharmacol 2007, 21:419-426.
  • [18]Scott SA, Edelmann L, Kornreich R, Desnick RJ: Warfarin pharmacogenetics: CYP2C9 and VKORC1 genotypes predict different sensitivity and resistance frequencies in the Ashkenazi and Sephardi Jewish populations. Am J Hum Genet 2008, 82:495-500.
  • [19]Scordo MG, Pengo V, Spina E, Dahl ML, Gusella M, Padrini R: Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin Pharmacol Ther 2002, 72:702-710.
  • [20]Jorgensen AL, FitzGerald RJ, Oyee J, Pirmohamed M, Williamson PR: Influence of CYP2C9 and VKORC1 on patient response to warfarin: a systematic review and meta-analysis. PLoS One 2012, 7:e44064.
  • [21]Limdi NA, Wadelius M, Cavallari L, Eriksson N, Crawford DC, Lee MT, Chen CH, Motsinger-Reif A, Sagreiya H, Liu N, Wu AH, Gage BF, Jorgensen A, Pirmohamed M, Shin JG, Suarez-Kurtz G, Kimmel SE, Johnson JA, Klein TE, Wagner MJ, International Warfarin Pharmacogenetics Consortium: Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups. Blood 2010, 115:3827-3834.
  • [22]Tavridou A, Petridis I, Vasileiadis M, Ragia G, Heliopoulos I, Vargemezis V, Manolopoulos VG: Association of VKORC1–1639 G > A polymorphism with carotid intima-media thickness in type 2 diabetes mellitus. Diabetes Res Clin Pract 2011, 94:236-241.
  文献评价指标  
  下载次数:9次 浏览次数:10次