期刊论文详细信息
BMC Genetics
Molecular diversity and population structure at the Cytochrome P450 3A5 gene in Africa
Mark G Thomas5  Neil N Bradman4  Endashaw Bekele3  Ayele Tarekegn3  Christopher A Plaster2  Mirna Kovacevic1  Ripudaman K Bains2 
[1] Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, Physics Building, Gower Street, London, WC1E 6BT, UK;Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK;Addis Ababa University and Center of Human Genetic Diversity, P.O. Box 1176, Addis Ababa, Ethiopia;Henry Stewart Group, 28/30 Little Russell Street, London, WC1A 2HN, UK;Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
关键词: Pharmacogenetics;    Gene-environment correlations;    Population genetics;    Africa;    Cytochrome P450 3A5;   
Others  :  1087176
DOI  :  10.1186/1471-2156-14-34
 received in 2013-02-15, accepted in 2013-04-25,  发布年份 2013
PDF
【 摘 要 】

Background

Cytochrome P450 3A5 (CYP3A5) is an enzyme involved in the metabolism of many therapeutic drugs. CYP3A5 expression levels vary between individuals and populations, and this contributes to adverse clinical outcomes. Variable expression is largely attributed to four alleles, CYP3A5*1 (expresser allele); CYP3A5*3 (rs776746), CYP3A5*6 (rs10264272) and CYP3A5*7 (rs41303343) (low/non-expresser alleles). Little is known about CYP3A5 variability in Africa, a region with considerable genetic diversity. Here we used a multi-disciplinary approach to characterize CYP3A5 variation in geographically and ethnically diverse populations from in and around Africa, and infer the evolutionary processes that have shaped patterns of diversity in this gene. We genotyped 2538 individuals from 36 diverse populations in and around Africa for common low/non-expresser CYP3A5 alleles, and re-sequenced the CYP3A5 gene in five Ethiopian ethnic groups. We estimated the ages of low/non-expresser CYP3A5 alleles using a linked microsatellite and assuming a step-wise mutation model of evolution. Finally, we examined a hypothesis that CYP3A5 is important in salt retention adaptation by performing correlations with ecological data relating to aridity for the present day, 10,000 and 50,000 years ago.

Results

We estimate that ~43% of individuals within our African dataset express CYP3A5, which is lower than previous independent estimates for the region. We found significant intra-African variability in CYP3A5 expression phenotypes. Within Africa the highest frequencies of high-activity alleles were observed in equatorial and Niger-Congo speaking populations. Ethiopian allele frequencies were intermediate between those of other sub-Saharan African and non-African groups. Re-sequencing of CYP3A5 identified few additional variants likely to affect CYP3A5 expression. We estimate the ages of CYP3A5*3 as ~76,400 years and CYP3A5*6 as ~218,400 years. Finally we report that global CYP3A5 expression levels correlated significantly with aridity measures for 10,000 [Spearmann’s Rho= −0.465, p=0.004] and 50,000 years ago [Spearmann’s Rho= −0.379, p=0.02].

Conclusions

Significant intra-African diversity at the CYP3A5 gene is likely to contribute to multiple pharmacogenetic profiles across the continent. Significant correlations between CYP3A5 expression phenotypes and aridity data are consistent with a hypothesis that the enzyme is important in salt-retention adaptation.

【 授权许可】

   
2013 Bains et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116023544277.pdf 1455KB PDF download
Figure 2. 69KB Image download
Figure 1. 112KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Coleman R: Disease burden in sub-Saharan Africa. Lancet 1998, 351(9110):1208.
  • [2]Stearns SC: Evolutionary medicine: its scope, interest and potential. Proceedings Biological sciences/The Royal Society 2012, 279(1746):4305-4321.
  • [3]Zhou SF, Liu JP, Chowbay B: Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 2009, 41(2):89-295.
  • [4]Nebert DW, Russell DW: Clinical importance of the cytochromes P450. Lancet 2002, 360(9340):1155-1162.
  • [5]Wojnowski L: Genetics of the variable expression of CYP3A in humans. Ther Drug Monit 2004, 26(2):192-199.
  • [6]Perera MA: The missing linkage: what pharmacogenetic associations are left to find in CYP3A? Expert Opin Drug Metab Toxicol 2010, 6(1):17-28.
  • [7]Shi Y, Li Y, Tang J, Zhang J, Zou Y, Cai B, Wang L: Influence of CYP3A4, CYP3A5 and MDR-1 polymorphisms on tacrolimus pharmacokinetics and early renal dysfunction in liver transplant recipients. Gene 2013, 512(2):226-231.
  • [8]Bochud M, Eap CB, Elston RC, Bovet P, Maillard M, Schild L, Shamlaye C, Burnier M: Association of CYP3A5 genotypes with blood pressure and renal function in African families. J Hypertens 2006, 24(5):923-929.
  • [9]Plummer SJ, Conti DV, Paris PL, Curran AP, Casey G, Witte JS: CYP3A4 and CYP3A5 genotypes, haplotypes, and risk of prostate cancer. Canc Epidemiol Biomarkers Prev: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2003, 12(9):928-932.
  • [10]Lee SJ, Usmani KA, Chanas B, Ghanayem B, Xi T, Hodgson E, Mohrenweiser HW, Goldstein JA: Genetic findings and functional studies of human CYP3A5 single nucleotide polymorphisms in different ethnic groups. Pharmacogenetics 2003, 13(8):461-472.
  • [11]Aoyama T, Yamano S, Waxman DJ, Lapenson DP, Meyer UA, Fischer V, Tyndale R, Inaba T, Kalow W, Gelboin HV: Cytochrome P-450 hPCN3, a novel cytochrome P-450 IIIA gene product that is differentially expressed in adult human liver. cDNA and deduced amino acid sequence and distinct specificities of cDNA-expressed hPCN1 and hPCN3 for the metabolism of steroid hormones and cyclosporine. J Biol Chem 1989, 264(18):10388-10395.
  • [12]Schuetz JD, Molowa DT, Guzelian PS: Characterization of a cDNA encoding a new member of the glucocorticoid-responsive cytochromes P450 in human liver. Arch Biochem Biophys 1989, 274(2):355-365.
  • [13]Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, Watkins PB, Daly A, Wrighton SA, Hall SD, Maurel P, Relling M, Brimer C, Yasuda K, Venkataramanan R, Strom S, Thummel K, Boguski MS, Schuetz E: Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001, 27(4):383-391.
  • [14]Hustert E, Haberl M, Burk O, Wolbold R, He YQ, Klein K, Nuessler AC, Neuhaus P, Klattig J, Eiselt R, Koch I, Zibat A, Brockmoller J, Halpert JR, Zanger UM, Wojnowski L: The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 2001, 11(9):773-779.
  • [15]Quaranta S, Chevalier D, Allorge D, Lo-Guidice JM, Migot-Nabias F, Kenani A, Imbenotte M, Broly F, Lacarelle B, Lhermitte M: Ethnic differences in the distribution of CYP3A5 gene polymorphisms. Xenobiotica 2006, 36(12):1191-1200.
  • [16]Roy JN, Lajoie J, Zijenah LS, Barama A, Poirier C, Ward BJ, Roger M: CYP3A5 genetic polymorphisms in different ethnic populations. Drug Metab Dispos 2005, 33(7):884-887.
  • [17]Park SY, Kang YS, Jeong MS, Yoon HK, Han KO: Frequencies of CYP3A5 genotypes and haplotypes in a Korean population. J Clin Pharm Ther 2008, 33(1):61-65.
  • [18]He P, Court MH, Greenblatt DJ, Von Moltke LL: Genotype-phenotype associations of cytochrome P450 3A4 and 3A5 polymorphism with midazolam clearance in vivo. Clin Pharmacol Ther 2005, 77(5):373-387.
  • [19]Tucker AN, Tkaczuk KA, Lewis LM, Tomic D, Lim CK, Flaws JA: Polymorphisms in cytochrome P4503A5 (CYP3A5) may be associated with race and tumor characteristics, but not metabolism and side effects of tamoxifen in breast cancer patients. Cancer Lett 2005, 217(1):61-72.
  • [20]Thompson EE, Kuttab-Boulos H, Witonsky D, Yang L, Roe BA, Di Rienzo A: CYP3A variation and the evolution of salt-sensitivity variants. Am J Hum Genet 2004, 75(6):1059-1069.
  • [21]Young JH, Chang YP, Kim JD, Chretien JP, Klag MJ, Levine MA, Ruff CB, Wang NY, Chakravarti A: Differential susceptibility to hypertension is due to selection during the out-of-Africa expansion. PLoS Genet 2005, 1(6):e82.
  • [22]Wrighton SA, Brian WR, Sari MA, Iwasaki M, Guengerich FP, Raucy JL, Molowa DT, Vandenbranden M: Studies on the expression and metabolic capabilities of human liver cytochrome P450IIIA5 (HLp3). Mol Pharmacol 1990, 38(2):207-213.
  • [23]Bochud M, Bovet P, Burnier M, Eap CB: CYP3A5 and ABCB1 genes and hypertension. Pharmacogenomics 2009, 10(3):477-487.
  • [24]Givens RC, Lin YS, Dowling AL, Thummel KE, Lamba JK, Schuetz EG, Stewart PW, Watkins PB: CYP3A5 genotype predicts renal CYP3A activity and blood pressure in healthy adults. J Appl Physiol 2003, 95(3):1297-1300.
  • [25]Chen X, Wang H, Zhou G, Zhang X, Dong X, Zhi L, Jin L, He F: Molecular population genetics of human CYP3A locus: signatures of positive selection and implications for evolutionary environmental medicine. Environ Health Perspect 2009, 117(10):1541-1548.
  • [26]Li J, Zhang L, Zhou H, Stoneking M, Tang K: Global patterns of genetic diversity and signals of natural selection for human ADME genes. Hum Mol Genet 2011, 20(3):528-540.
  • [27]DeGiorgio M, Jakobsson M, Rosenberg NA: Out of Africa: modern human origins special feature: explaining worldwide patterns of human genetic variation using a coalescent-based serial founder model of migration outward from Africa. Proc Natl Acad Sci USA 2009, 106(38):16057-16062.
  • [28]Li JZ, Absher DM, Tang H, Southwick AM, Casto AM, Ramachandran S, Cann HM, Barsh GS, Feldman M, Cavalli-Sforza LL, Myers RM: Worldwide human relationships inferred from genome-wide patterns of variation. Science 2008, 319(5866):1100-1104.
  • [29]Prugnolle F, Manica A, Balloux F: Geography predicts neutral genetic diversity of human populations. Curr Biol 2005, 15(5):R159-R160.
  • [30]Ramachandran S, Deshpande O, Roseman CC, Rosenberg NA, Feldman MW, Cavalli-Sforza LL: Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proc Natl Acad Sci USA 2005, 102(44):15942-15947.
  • [31]Browning SL, Tarekegn A, Bekele E, Bradman N, Thomas MG: CYP1A2 is more variable than previously thought: a genomic biography of the gene behind the human drug-metabolizing enzyme. Pharmacogenet Genomics 2010, 20(11):647-664.
  • [32]Horsfall LJ, Zeitlyn D, Tarekegn A, Bekele E, Thomas MG, Bradman N, Swallow DM: Prevalence of clinically relevant UGT1A alleles and haplotypes in African populations. Ann Hum Genet 2011, 75(2):236-246.
  • [33]Veeramah KR, Thomas MG, Weale ME, Zeitlyn D, Tarekegn A, Bekele E, Mendell NR, Shephard EA, Bradman N, Phillips IR: The potentially deleterious functional variant flavin-containing monooxygenase 2*1 is at high frequency throughout sub-Saharan Africa. Pharmacogenet Genomics 2008, 18(10):877-886.
  • [34]Croitoru A-E, Piticar A, Imbroane AM, Burada DC: Spatiotemporal distribution of aridity indices based on temperature and precipitation in the extra-Carpathian regions of Romania. Theor Appl Climatol 2012.
  • [35]Nei M, Kumar S: Molecular evolution and phylogenetics. New York: Oxford University Press; 2000.
  • [36]Kitano T, Liu YH, Ueda S, Saitou N: Human-specific amino acid changes found in 103 protein-coding genes. Mol Biol Evol 2004, 21(5):936-944.
  • [37]Burk O, Koch I, Raucy J, Hustert E, Eichelbaum M, Brockmoller J, Zanger UM, Wojnowski L: The induction of cytochrome P450 3A5 (CYP3A5) in the human liver and intestine is mediated by the xenobiotic sensors pregnane X receptor (PXR) and constitutively activated receptor (CAR). J Biol Chem 2004, 279(37):38379-38385.
  • [38]Lin YS, Dowling AL, Quigley SD, Farin FM, Zhang J, Lamba J, Schuetz EG, Thummel KE: Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol Pharmacol 2002, 62(1):162-172.
  • [39]Busi F, Cresteil T: CYP3A5 mRNA degradation by nonsense-mediated mRNA decay. Mol Pharmacol 2005, 68(3):808-815.
  • [40]Kimura M: The neutral theory of molecular evolution. Sci Am 1979, 241(5):98-100. 102, 108 passim
  • [41]Fay JC, Wu CI: Hitchhiking under positive darwinian selection. Genetics 2000, 155(3):1405-1413.
  • [42]Plaster CA: Variation in Y chromosome, mitochondrial DNA, and labels of identity in Ethiopia. University College London, Research Department of Genetics, Evolution and Environment: PhD thesis; 2011.
  • [43]Pagani L, Kivisild T, Tarekegn A, Ekong R, Plaster C, Gallego Romero I, Ayub Q, Mehdi SQ, Thomas MG, Luiselli D, Bekele E, Bradman N, Balding DJ, Tyler-Smith C: Ethiopian genetic diversity reveals linguistic stratification and complex influences on the Ethiopian gene pool. Am J Hum Genet 2012, 91(1):83-96.
  • [44]Slatkin M, Rannala B: Estimating allele age. Annu Rev Genomics Hum Genet 2000, 1:225-249.
  • [45]Rannala B, Bertorelle G: Using linked markers to infer the age of a mutation. Hum Mutat 2001, 18(2):87-100.
  • [46]Tremblay M, Vezina H: New estimates of intergenerational time intervals for the calculation of age and origins of mutations. Am J Hum Genet 2000, 66(2):651-658.
  • [47]Griffiths RC, Marjoram P: Ancestral inference from samples of DNA sequences with recombination. J Comput Biol 1996, 3(4):479-502.
  • [48]Cruciani F, Santolamazza P, Shen P, Macaulay V, Moral P, Olckers A, Modiano D, Holmes S, Destro-Bisol G, Coia V, Wallace DC, Oefner PJ, Torroni A, Cavalli-Sforza LL, Scozzari R, Underhill PA: A back migration from Asia to sub-Saharan Africa is supported by high-resolution analysis of human Y-chromosome haplotypes. Am J Hum Genet 2002, 70(5):1197-1214.
  • [49]Salas A, Richards M, De la Fe T, Lareu MV, Sobrino B, Sanchez-Diz P, Macaulay V, Carracedo A: The making of the African mtDNA landscape. Am J Hum Genet 2002, 71(5):1082-1111.
  • [50]Lovell A, Moreau C, Yotova V, Xiao F, Bourgeois S, Gehl D, Bertranpetit J, Schurr E, Labuda D: Ethiopia: between Sub-Saharan Africa and western Eurasia. Ann Hum Genet 2005, 69(Pt 3):275-287.
  • [51]Gebeyehu E, Engidawork E, Bijnsdorp A, Aminy A, Diczfalusy U, Aklillu E: Sex and CYP3A5 genotype influence total CYP3A activity: high CYP3A activity and a unique distribution of CYP3A5 variant alleles in Ethiopians. Pharmacogenomics J 2011, 11(2):130-137.
  • [52]Kivisild T, Reidla M, Metspalu E, Rosa A, Brehm A, Pennarun E, Parik J, Geberhiwot T, Usanga E, Villems R: Ethiopian mitochondrial DNA heritage: tracking gene flow across and around the gate of tears. Am J Hum Genet 2004, 75(5):752-770.
  • [53]Mukonzo JK, Waako P, Ogwal-Okeng J, Gustafsson LL, Aklillu E: Genetic variations in ABCB1 and CYP3A5 as well as sex influence quinine disposition among Ugandans. Ther Drug Monit 2010, 32(3):346-352.
  • [54]Josephson F, Allqvist A, Janabi M, Sayi J, Aklillu E, Jande M, Mahindi M, Burhenne J, Bottiger Y, Gustafsson LL, Haefeli WE, Bertilsson L: CYP3A5 genotype has an impact on the metabolism of the HIV protease inhibitor saquinavir. Clin Pharmacol Ther 2007, 81(5):708-712.
  • [55]Oliveira E, Pereira R, Amorim A, McLeod H, Prata MJ: Patterns of pharmacogenetic diversity in African populations: role of ancient and recent history. Pharmacogenomics 2009, 10(9):1413-1422.
  • [56]Sgaier SK, Jha P, Mony P, Kurpad A, Lakshmi V, Kumar R, Ganguly NK: Public health. Biobanks in developing countries: needs and feasibility. Science 2007, 318(5853):1074-1075.
  • [57]Lamba JK, Lin YS, Schuetz EG, Thummel KE: Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 2002, 54(10):1271-1294.
  • [58]Butler D: Genomics. Are you ready for the revolution? Nature 2001, 409(6822):758-760.
  • [59]Chung RT: Reaping the early harvest of the genomics revolution. Gastroenterology 2010, 138(5):1653-1654.
  • [60]Defrancesco L: Life Technologies promises $1,000 genome. Nat Biotechnol 2012, 30(2):126.
  • [61]Beleza S, Gusmao L, Amorim A, Carracedo A, Salas A: The genetic legacy of western Bantu migrations. Hum Genet 2005, 117(4):366-375.
  • [62]Voight BF, Kudaravalli S, Wen X, Pritchard JK: A map of recent positive selection in the human genome. PLoS Biol 2006, 4(3):e72.
  • [63]Conrad DF, Jakobsson M, Coop G, Wen X, Wall JD, Rosenberg NA, Pritchard JK: A worldwide survey of haplotype variation and linkage disequilibrium in the human genome. Nat Genet 2006, 38(11):1251-1260.
  • [64]Sabeti PC, Schaffner SF, Fry B, Lohmueller J, Varilly P, Shamovsky O, Palma A, Mikkelsen TS, Altshuler D, Lander ES: Positive natural selection in the human lineage. Science 2006, 312(5780):1614-1620.
  • [65]Gerbault P, Liebert A, Itan Y, Powell A, Currat M, Burger J, Swallow DM, Thomas MG: Evolution of lactase persistence: an example of human niche construction. Philos Trans R Soc Lond B Biol Sci 2011, 366(1566):863-877.
  • [66]Tishkoff SA, Reed FA, Ranciaro A, Voight BF, Babbitt CC, Silverman JS, Powell K, Mortensen HM, Hirbo JB, Osman M, Ibrahim M, Omar SA, Lema G, Nyambo TB, Ghori J, Bumpstead S, Pritchard JK, Wray GA, Deloukas P: Convergent adaptation of human lactase persistence in Africa and Europe. Nat Genet 2007, 39(1):31-40.
  • [67]Thompson EE, Kuttab-Boulos H, Yang L, Roe BA, Di Rienzo A: Sequence diversity and haplotype structure at the human CYP3A cluster. Pharmacogenomics J 2006, 6(2):105-114.
  • [68]Whittaker JC, Harbord RM, Boxall N, Mackay I, Dawson G, Sibly RM: Likelihood-based estimation of microsatellite mutation rates. Genetics 2003, 164(2):781-787.
  • [69]Biswas S, Akey JM: Genomic insights into positive selection. Trends in genetics: TIG 2006, 22(8):437-446.
  • [70]Samani NJ, Tomaszewski M, Schunkert H: The personal genome–the future of personalised medicine? Lancet 2010, 375(9725):1497-1498.
  • [71]Pakenham T: The scramble for Africa, 1876–1912. London: Weidenfeld and Nicolson; 1991.
  • [72]Thomas MG, Bradman N, Flinn HM: High throughput analysis of 10 microsatellite and 11 diallelic polymorphisms on the human Y-chromosome. Hum Genet 1999, 105(6):577-581.
  • [73]Excoffier L, Laval G, Schneider S: Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 2005, 1:47-50.
  • [74]Stephens M, Smith NJ, Donnelly P: A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001, 68(4):978-989.
  • [75]Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25(11):1451-1452.
  • [76]Smith RS, Gregory J: The last glacial cycle: transient simulations with an AOGCM. Clim Dyn 2012, 38:1545-1560.
  • [77]Paradis E, Claude J, Strimmer K: APE: analyses of phylogenetics and evolution in R language. Bioinformatics 2004, 20(2):289-290.
  • [78]Urban SCGDL: The ecodist package for dissimilarity-based analysis of ecological data. J Stat Software 2007, 22(7):19.
  • [79]Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, Frisch M, Bayerlein M, Werner T: MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 2005, 21(13):2933-2942.
  • [80]Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR: A method and server for predicting damaging missense mutations. Nat Methods 2010, 7(4):248-249.
  • [81]Reese MG, Eeckman FH, Kulp D, Haussler D: Improved splice site detection in genie. J Comput Biol 1997, 4(3):311-323.
  • [82]Goldstein DB, Ruiz Linares A, Cavalli-Sforza LL, Feldman MW: Genetic absolute dating based on microsatellites and the origin of modern humans. Proc Natl Acad Sci USA 1995, 92(15):6723-6727.
  • [83]Slatkin M: A measure of population subdivision based on microsatellite allele frequencies. Genetics 1995, 139(1):457-462.
  • [84]Farrall M, Weeks DE: Mutational mechanisms for generating microsatellite allele-frequency distributions: an analysis of 4,558 markers. Am J Hum Genet 1998, 62(5):1260-1262.
  • [85]Behar DM, Thomas MG, Skorecki K, Hammer MF, Bulygina E, Rosengarten D, Jones AL, Held K, Moses V, Goldstein D, Bradman N, Weale ME: Multiple origins of ashkenazi levites: Y chromosome evidence for both near eastern and european ancestries. Am J Hum Genet 2003, 73(4):768-779.
  文献评价指标  
  下载次数:13次 浏览次数:9次