期刊论文详细信息
BMC Molecular Biology
UtroUp is a novel six zinc finger artificial transcription factor that recognises 18 base pairs of the utrophin promoter and efficiently drives utrophin upregulation
Nicoletta Corbi1  Claudio Passananti1  Elisabetta Mattei2  Lucia Monaco3  Georgios Strimpakos2  Cinzia Pisani1  Annalisa Onori1 
[1] Institute of Molecular Biology and Pathology CNR, c/o Department of Molecular Medicine, University “Sapienza”, Viale Regina Elena 291, 00161, Rome, Italy;Institute of Cell Biology and Neurobiology CNR, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy;Department of Physiology and Pharmacology, University Sapienza, Piazzale Aldo Moro 5, 00185, Rome, Italy
关键词: Che-1/AATF;    Activation domain;    Artificial transcription factor;    Zinc finger;    Utrophin;    Dystrophin;    DMD;   
Others  :  1091286
DOI  :  10.1186/1471-2199-14-3
 received in 2012-03-30, accepted in 2012-12-12,  发布年份 2013
PDF
【 摘 要 】

Background

Duchenne muscular dystrophy (DMD) is the most common X-linked muscle degenerative disease and it is due to the absence of the cytoskeletal protein dystrophin. Currently there is no effective treatment for DMD. Among the different strategies for achieving a functional recovery of the dystrophic muscle, the upregulation of the dystrophin-related gene utrophin is becoming more and more feasible.

Results

We have previously shown that the zinc finger-based artificial transcriptional factor “Jazz” corrects the dystrophic pathology in mdx mice by upregulating utrophin gene expression. Here we describe a novel artificial transcription factor, named “UtroUp”, engineered to further improve the DNA-binding specificity. UtroUp has been designed to recognise an extended DNA target sequence on both the human and mouse utrophin gene promoters. The UtroUp DNA-binding domain contains six zinc finger motifs in tandem, which is able to recognise an 18-base-pair DNA target sequence that statistically is present only once in the human genome. To achieve a higher transcriptional activation, we coupled the UtroUp DNA-binding domain with the innovative transcriptional activation domain, which was derived from the multivalent adaptor protein Che-1/AATF. We show that the artificial transcription factor UtroUp, due to its six zinc finger tandem motif, possesses a low dissociation constant that is consistent with a strong affinity/specificity toward its DNA-binding site. When expressed in mammalian cell lines, UtroUp promotes utrophin transcription and efficiently accesses active chromatin promoting accumulation of the acetylated form of histone H3 in the utrophin promoter locus.

Conclusions

This novel artificial molecule may represent an improved platform for the development of future applications in DMD treatment.

【 授权许可】

   
2013 Onori et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128170852990.pdf 1564KB PDF download
Figure 4. 49KB Image download
Figure 3. 39KB Image download
Figure 2. 56KB Image download
Figure 1. 72KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]McNally EM, Pytel P: Muscle Disease: The Muscular Dystrophies. Annu Rev Pathol Mech Dis 2007, 2:87-109.
  • [2]Fairclough RJ, Bareja A, Davies KE: Progress in therapy for Duchenne muscular dystrophy. Exp Physiol 2011, 96(11):1101-1113.
  • [3]Pichavant C, Aartsma-Rus A, Clemens PR, Davies KE, Dickson G, et al.: Current status of pharmaceutical and genetic therapeutic approaches to treat DMD. Mol Ther 2011, 19(5):830-840.
  • [4]Goyenvalle A, Seto JT, Davies KE, Chamberlain J: Therapeutic approaches to muscular dystrophy. Hum Mol Genet 2011, 20(R1):R69-78.
  • [5]Meng J, Muntoni F, Morgan JE: Stem cells to treat muscular dystrophies - where are we? Neuromuscul Disord 2011, 21(1):4-12.
  • [6]Cossu G, Sampaolesi M: New therapies for Duchenne muscular dystrophy: challenges, prospects and clinical trials. Trends Mol Med 2007, 13(12):520-526.
  • [7]Blake DJ, Weir A, Newey SE, Davies KE: Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 2002, 82:291-329.
  • [8]Ohlendieck K, Ervasti JM, Matsumura K, Kahl SD, Leveille CJ, et al.: Dystrophin-related protein is localized to neuromuscular junctions of adult skeletal muscle. Neuron 1991, 7:499-508.
  • [9]Gramolino AO, Karpati G, Jasmin BJ: Discordant expression of utrophin and its transcript in human and mouse skeletal muscles. J Neuropathol Exp Neurol 1999, 58:235-244.
  • [10]Nowak KJ, Davies KE: Duchenne muscular dystrophy and dystrophin: pathogenesis and opportunities for treatment. EMBO Rep 2004, 5(9):872-876.
  • [11]Khurana T, Davies KE: Pharmacological strategies for muscular dystrophy. Nat Rev Drug Discov 2003, 2:379-390.
  • [12]Miura P, Jasmin BJ: Utrophin upregulation for treating Duchenne or Becker muscular dystrophy: how close are we? Trends Mol Med 2006, 3:122-129.
  • [13]Stocksley MA, Chakkalakal JV, Bradford A, Miura P, De Repentigny Y, et al.: A 1.3 kb promoter fragment confers spatial and temporal expression of utrophin A mRNA in mouse skeletal muscle fibers. Neuromuscul Disord 2005, 15(6):437-449.
  • [14]Basu U, Gyrd-Hansen M, Baby SM, Lozynska O, Krag TO, et al.: Heregulin-induced epigenetic regulation of the utrophin-A promoter. FEBS Lett 2007, 4;581(22):4153-4158.
  • [15]Perkins KJ, Basu U, Budak MT, Ketterer C, Baby SM, et al.: Ets-2 repressor factor silences extrasynaptic utrophin by N-box mediated repression in skeletal muscle. Mol Biol Cell 2007, 18(8):2864-2872.
  • [16]Tinsley JM, Fairclough RJ, Storer R, Wilkes FJ, Potter AC, et al.: Daily treatment with SMTC1100, a novel small molecule utrophin upregulator, dramatically reduces the dystrophic symptoms in the mdx mouse. PLoS One 2011, 6(5):e19189.
  • [17]Amenta AR, Yilmaz A, Bogdanovich S, McKechnie BA, Abedi M, et al.: Biglycan recruits utrophin to the sarcolemma and counters dystrophic pathology in mdx mice. Proc Natl Acad Sci U S A 2011, 108(2):762-767.
  • [18]Corbi N, Libri V, Fanciulli M, Tinsley JM, Davies KE, Passananti C: The artificial zinc finger coding gene ‘Jazz’ binds the utrophin promoter and activates transcription. Gene Ther 2000, 7:1076-1083.
  • [19]Onori A, Desantis A, Buontempo S, Di Certo MG, Fanciulli M, et al.: The artificial 4-zinc-finger Bagly binds human utrophin promoter A at the endogenous chromosomal site and activates transcription. Biochem Cell Biol 2007, 85(3):358-365.
  • [20]Mattei E, Corbi N, Di Certo MG, Strimpakos G, Severini C, et al.: Utrophin up-regulation by an artificial transcription factor in transgenic mice. PLoS One 2007, 22; 2(1):e774.
  • [21]Desantis A, Onori A, Di Certo MG, Mattei E, Fanciulli M, et al.: Novel activation domain derived from Che-1 cofactor coupled with the artificial protein Jazz drives utrophin upregulation. Neuromuscul Disord 2009, 2:158-162.
  • [22]Di Certo MG, Corbi N, Strimpakos G, Onori A, Luvisetto S, et al.: The artificial gene Jazz, a transcriptional regulator of utrophin, corrects the dystrophic pathology in mdx mice. Hum Mol Genet 2010, 19(5):752-760.
  • [23]Passananti C, Corbi N, Onori A, Di Certo MG, Mattei E: Transgenic mice expressing an artificial zinc finger regulator targeting an endogenous gene. Methods Mol Biol 2010, 649:183-206.
  • [24]Corbi N, Libri V, Onori A, Passananti C: Synthetic zinc finger peptides: old and novel applications. Biochem Cell Biol 2004, 82:428-36.
  • [25]Klug A: The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation. Q Rev Biophys 2010, 43(1):1-21.
  • [26]ChooY K: A: Physical basis of a protein-DNA recognition code. Curr Opin Struct Biol 1997, 7(1):117-125.
  • [27]Pabo CO, Peisach E, Grant RA: Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 2001, 70:313-340.
  • [28]Segal DJ, Barbas CF 3rd: Custom DNA-binding proteins come of age: polydactyl zinc-finger proteins. Curr Opin Biotechnol 2001, 12(6):632-637.
  • [29]Klug A: The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev Biochem 2010, 79:213-31.
  • [30]Bhakta MS, Segal DJ: The generation of zinc finger proteins by modular assembly. Methods Mol Biol 2010, 649:3-30.
  • [31]Sera T: Zinc-finger-based artificial transcription factors and their applications. Adv Drug Deliv Rev 2009, 61(7–8):513-526.
  • [32]Fanciulli M, Bruno T, Di Padova M, De Angelis R, Iezzi S, Iacobini C, et al.: Identification of a novel partner of RNA polymerase II subunit 11, Che-1, which interacts with and affects the growth suppression function of Rb. FASEB J 2000, 14(7):904-912.
  • [33]Passananti C, Floridi A, Fanciulli M: Che-1/AATF, a multivalent adaptor connecting transcriptional regulation, checkpoint control, and apoptosis. Biochem Cell Biol 2007, 85(4):477-83.
  • [34]Passananti C, Fanciulli M: The anti-apoptotic factor Che-1/AATF links transcriptional regulation, cell cycle control, and DNA damage response. Cell Div 2007, 16(2):21.
  • [35]Dennis CL, Tinsley JM, Deconinck AE, Davies KE: Molecular and functional analysis of the utrophin promoter. Nucleic Acids Res 1996, 24:1646-1652.
  • [36]Verschure PJ, Visser AE, Rots MG: Step out of the groove: epigenetic gene control systems and engineered transcription factors. Adv Genet 2006, 56:163-204.
  • [37]Beltran AS, Blancafort P: Remodeling genomes with artificial transcription factors (ATFs). Methods Mol Biol 2010, 649:163-182.
  • [38]Costa FC, Fedosyuk H, Neades R, de Los Rios JB, Peterson KR, Barbas CF 3rd: Induction of Fetal Hemoglobin In Vivo Mediated by a Synthetic γ-Globin Zinc Finger Activator. Anemia 2012, 2012:507894.
  文献评价指标  
  下载次数:44次 浏览次数:25次