期刊论文详细信息
BMC Neuroscience
The prospect of molecular therapy for Angelman syndrome and other monogenic neurologic disorders
David J Segal1  Barbara J Bailus1 
[1] Genome Center, MIND Institute, and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
关键词: Autism spectrum disorders;    Angelman syndrome;    Blood–brain barrier;    Gene therapy;    Gene regulation;    CRISPR;    TALE;    Engineered zinc finger;    Artificial transcription factor;   
Others  :  799221
DOI  :  10.1186/1471-2202-15-76
 received in 2014-03-25, accepted in 2014-06-06,  发布年份 2014
PDF
【 摘 要 】

Background

Angelman syndrome is a monogenic neurologic disorder that affects 1 in 15,000 children, and is characterized by ataxia, intellectual disability, speech impairment, sleep disorders, and seizures. The disorder is caused by loss of central nervous system expression of UBE3A, a gene encoding a ubiquitin ligase. Current treatments focus on the management of symptoms, as there have not been therapies to treat the underlying molecular cause of the disease. However, this outlook is evolving with advances in molecular therapies, including artificial transcription factors a class of engineered DNA-binding proteins that have the potential to target a specific site in the genome.

Results

Here we review the recent progress and prospect of targeted gene expression therapies. Three main issues that must be addressed to advance toward human clinical trials are specificity, toxicity, and delivery.

Conclusions

Artificial transcription factors have the potential to address these concerns on a level that meets and in some cases exceeds current small molecule therapies. We examine the possibilities of such approaches in the context of Angelman syndrome, as a template for other single-gene, neurologic disorders.

【 授权许可】

   
2014 Bailus and Segal; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140707024001900.pdf 428KB PDF download
Figure 2. 82KB Image download
Figure 1. 26KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Lalande M, Calciano MA: Molecular epigenetics of Angelman syndrome. Cell Mol Life Sci 2007, 64(7–8):947-960.
  • [2]Chamberlain SJ, Lalande M: Angelman syndrome, a genomic imprinting disorder of the brain. J Neurosci 2010, 30(30):9958-9963.
  • [3]Kishino T, Lalande M, Wagstaff J: UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet 1997, 15(1):70-73.
  • [4]Chamberlain SJ, Lalande M: Neurodevelopmental disorders involving genomic imprinting at human chromosome 15q11-q13. Neurobiol Dis 2010, 39(1):13-20.
  • [5]Jamieson AC, Miller JC, Pabo CO: Drug discovery with engineered zinc-finger proteins. Nat Rev Drug Discov 2003, 2(5):361-368.
  • [6]Eisenstein M: Sangamo’s lead zinc-finger therapy flops in diabetic neuropathy. Nat Biotechnol 2012, 30(2):121-123.
  • [7]Albrecht U, Sutcliffe JS, Cattanach BM, Beechey CV, Armstrong D, Eichele G, Beaudet AL: Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons. Nat Genet 1997, 17(1):75-78.
  • [8]Rougeulle C, Glatt H, Lalande M: The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain. Nat Genet 1997, 17(1):14-15.
  • [9]El Hokayem J, Nawaz Z: E6AP in the brain: one protein, dual function, multiple diseases. Mol Neurobiol 2014, 49(2):827-839.
  • [10]Greer PL, Hanayama R, Bloodgood BL, Mardinly AR, Lipton DM, Flavell SW, Kim TK, Griffith EC, Waldon Z, Maehr R, Ploegh HL, Chowdhury S, Worley PF, Steen J, Greenberg ME: The Angelman syndrome protein Ube3A regulates synapse development by ubiquitinating Arc. Cell 2010, 140(5):704-716.
  • [11]Margolis SS, Salogiannis J, Lipton DM, Mandel-Brehm C, Wills ZP, Mardinly AR, Hu L, Greer PL, Bikoff JB, Ho HY, Soskis MJ, Sahin M, Greenberg ME: EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation. Cell 2010, 143(3):442-455.
  • [12]Baudry M, Kramar E, Xu X, Zadran H, Moreno S, Lynch G, Gall C, Bi X: Ampakines promote spine actin polymerization, long-term potentiation, and learning in a mouse model of Angelman syndrome. Neurobiol Dis 2012, 47(2):210-215.
  • [13]van Woerden GM, Harris KD, Hojjati MR, Gustin RM, Qiu S, de Avila FR, Jiang YH, Elgersma Y, Weeber EJ: Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of alphaCaMKII inhibitory phosphorylation. Nat Neurosci 2007, 10(3):280-282.
  • [14]Bayer KU, Lohler J, Schulman H, Harbers K: Developmental expression of the CaM kinase II isoforms: ubiquitous gamma- and delta-CaM kinase II are the early isoforms and most abundant in the developing nervous system. Brain Res Mol Brain Res 1999, 70(1):147-154.
  • [15]Karls U, Muller U, Gilbert DJ, Copeland NG, Jenkins NA, Harbers K: Structure, expression, and chromosome location of the gene for the beta subunit of brain-specific Ca2+/calmodulin-dependent protein kinase II identified by transgene integration in an embryonic lethal mouse mutant. Mol Cell Biol 1992, 12(8):3644-3652.
  • [16]Young LS, Searle PF, Onion D, Mautner V: Viral gene therapy strategies: from basic science to clinical application. J Pathol 2006, 208(2):299-318.
  • [17]Jiang YH, Armstrong D, Albrecht U, Atkins CM, Noebels JL, Eichele G, Sweatt JD, Beaudet AL: Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 1998, 21(4):799-811.
  • [18]Daily JL, Nash K, Jinwal U, Golde T, Rogers J, Peters MM, Burdine RD, Dickey C, Banko JL, Weeber EJ: Adeno-associated virus-mediated rescue of the cognitive defects in a mouse model for Angelman syndrome. PLoS One 2011, 6(12):e27221.
  • [19]Yamamoto Y, Huibregtse JM, Howley PM: The human E6-AP gene (UBE3A) encodes three potential protein isoforms generated by differential splicing. Genomics 1997, 41(2):263-266.
  • [20]Dindot SV, Antalffy BA, Bhattacharjee MB, Beaudet AL: The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum Mol Genet 2008, 17(1):111-118.
  • [21]Chamberlain SJ: RNAs of the human chromosome 15q11-q13 imprinted region. Wiley Interdisc Rev RNA 2013, 4(2):155-166.
  • [22]Meng L, Person RE, Huang W, Zhu PJ, Costa-Mattioli M, Beaudet AL: Truncation of Ube3a-ATS unsilences paternal Ube3a and ameliorates behavioral defects in the Angelman syndrome mouse model. PLoS Genet 2013, 9(12):e1004039.
  • [23]Meng L, Person RE, Beaudet AL: Ube3a-ATS is an atypical RNA polymerase II transcript that represses the paternal expression of Ube3a. Hum Mol Genet 2012, 21(13):3001-3012.
  • [24]Huang HS, Allen JA, Mabb AM, King IF, Miriyala J, Taylor-Blake B, Sciaky N, Dutton JW Jr, Lee HM, Chen X, Jin J, Bridges AS, Zylka MJ, Roth BL, Philpot BD: Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons. Nature 2012, 481(7380):185-189.
  • [25]King IF, Yandava CN, Mabb AM, Hsiao JS, Huang HS, Pearson BL, Calabrese JM, Starmer J, Parker JS, Magnuson T, Chamberlain SJ, Philpot BD, Zylka MJ: Topoisomerases facilitate transcription of long genes linked to autism. Nature 2013, 501(7465):58-62.
  • [26]Powell WT, Coulson RL, Gonzales ML, Crary FK, Wong SS, Adams S, Ach RA, Tsang P, Yamada NA, Yasui DH, Chedin F, LaSalle JM: R-loop formation at Snord116 mediates topotecan inhibition of Ube3a-antisense and allele-specific chromatin decondensation. Proc Natl Acad Sci U S A 2013, 110(34):13938-13943.
  • [27]Szyf M: Epigenetics, DNA methylation, and chromatin modifying drugs. Annu Rev Pharmacol Toxicol 2009, 49:243-263.
  • [28]Cearley CN, Wolfe JH: A single injection of an adeno-associated virus vector into nuclei with divergent connections results in widespread vector distribution in the brain and global correction of a neurogenetic disease. J Neurosci 2007, 27(37):9928-9940.
  • [29]Gustin RM, Bichell TJ, Bubser M, Daily J, Filonova I, Mrelashvili D, Deutch AY, Colbran RJ, Weeber EJ, Haas KF: Tissue-specific variation of Ube3a protein expression in rodents and in a mouse model of Angelman syndrome. Neurobiol Dis 2010, 39(3):283-291.
  • [30]Cearley CN, Vandenberghe LH, Parente MK, Carnish ER, Wilson JM, Wolfe JH: Expanded repertoire of AAV vector serotypes mediate unique patterns of transduction in mouse brain. Mol Ther 2008, 16(10):1710-1718.
  • [31]Mingozzi F, High KA: Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood 2013, 122(1):23-36.
  • [32]Cearley CN, Wolfe JH: Transduction characteristics of adeno-associated virus vectors expressing cap serotypes 7, 8, 9, and Rh10 in the mouse brain. Mol Ther 2006, 13(3):528-537.
  • [33]Tremblay JP, Xiao X, Aartsma-Rus A, Barbas C, Blau HM, Bogdanove AJ, Boycott K, Braun S, Breakefield XO, Bueren JA, Buschmann M, Byrne BJ, Calos M, Cathomen T, Chamberlain J, Chuah M, Cornetta K, Davies KE, Dickson JG, Duchateau P, Flotte TR, Gaudet D, Gersbach CA, Gilbert R, Glorioso J, Herzog RW, High KA, Huang W, Huard J, Joung JK, et al.: Translating the genomics revolution: the need for an international gene therapy consortium for monogenic diseases. Mol Ther 2013, 21(2):266-268.
  • [34]Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J: Gene therapy clinical trials worldwide to 2012 - an update. J Gene Med 2013, 15(2):65-77.
  • [35]Blancafort P, Beltran AS: Rational design, selection and specificity of Artificial Transcription Factors (ATFs): the influence of chromatin in target gene regulation. Comb Chem High Throughput Screen 2008, 11(2):146-158.
  • [36]Sera T: Zinc-finger-based artificial transcription factors and their applications. Adv Drug Deliv Rev 2009, 61(7–8):513-526.
  • [37]Segal DJ, Meckler JF: Genome engineering at the dawn of the golden age. Annu Rev Genomics Hum Genet 2013, 14:135-158.
  • [38]Sander JD, Joung JK: CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 2014, 32(4):347-355.
  • [39]Beerli RR, Segal DJ, Dreier B, Barbas CF III: Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc Natl Acad Sci U S A 1998, 95(25):14628-14633.
  • [40]Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U: Breaking the code of DNA binding specificity of TAL-type III effectors. Science 2009, 326(5959):1509-1512.
  • [41]Moscou MJ, Bogdanove AJ: A simple cipher governs DNA recognition by TAL effectors. Science 2009, 326(5959):1501.
  • [42]Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS: CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013, 154(2):442-451.
  • [43]Cruvinel E, Budinetz T, Germain N, Chamberlain S, Lalande M, Martins-Taylor K: Reactivation of Maternal SNORD116 Cluster via SETDB1 knockdown in Prader-Willi Syndrome iPSCs. Hum Mol Genet 2014. doi:10.1093/hmg/ddu1187
  • [44]Scoles HA, Urraca N, Chadwick SW, Reiter LT, Lasalle JM: Increased copy number for methylated maternal 15q duplications leads to changes in gene and protein expression in human cortical samples. Mol Autism 2011, 2(1):19.
  • [45]Sweatt JD: Pitt-Hopkins Syndrome: intellectual disability due to loss of TCF4-regulated gene transcription. Exp Mol Med 2013, 45:e21.
  • [46]Ricceri L, De Filippis B, Laviola G: Rett syndrome treatment in mouse models: searching for effective targets and strategies. Neuropharmacology 2013, 68:106-115.
  • [47]Wolfe SA, Nekludova L, Pabo CO: DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct 2000, 29:183-212.
  • [48]Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, Curtin SJ, Blackburn JS, Thibodeau-Beganny S, Qi Y, Pierick CJ, Hoffman E, Maeder ML, Khayter C, Reyon D, Dobbs D, Langenau DM, Stupar RM, Giraldez AJ, Voytas DF, Peterson RT, Yeh JR, Joung JK: Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 2011, 8(1):67-69.
  • [49]Bhakta MS, Segal DJ: The generation of zinc finger proteins by modular assembly. Methods Mol Biol 2010, 649:3-30.
  • [50]Bae KH, Kwon YD, Shin HC, Hwang MS, Ryu EH, Park KS, Yang HY, Lee DK, Lee Y, Park J, Kwon HS, Kim HW, Yeh BI, Lee HW, Sohn SH, Yoon J, Seol W, Kim JS: Human zinc fingers as building blocks in the construction of artificial transcription factors. Nat Biotechnol 2003, 21(3):275-280.
  • [51]Gonzalez B, Schwimmer LJ, Fuller RP, Ye Y, Asawapornmongkol L, Barbas CF 3rd: Modular system for the construction of zinc-finger libraries and proteins. Nat Protoc 2010, 5(4):791-810.
  • [52]Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337(6096):816-821.
  • [53]Consortium EP, Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M: An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489(7414):57-74.
  • [54]Zykovich A, Korf I, Segal DJ: Bind-n-Seq: high-throughput analysis of in vitro protein-DNA interactions using massively parallel sequencing. Nucleic Acids Res 2009, 37(22):e151.
  • [55]McNamara AR, Hurd PJ, Smith AE, Ford KG: Characterisation of site-biased DNA methyltransferases: specificity, affinity and subsite relationships. Nucleic Acids Res 2002, 30(17):3818-3830.
  • [56]Zhang L, Spratt SK, Liu Q, Johnstone B, Qi H, Raschke EE, Jamieson AC, Rebar EJ, Wolffe AP, Case CC: Synthetic zinc finger transcription factor action at an endogenous chromosomal site. Activation of the human erythropoietin gene. J Biol Chem 2000, 275(43):33850-33860.
  • [57]O’Geen H, Frietze S, Farnham PJ: Using ChIP-seq technology to identify targets of zinc finger transcription factors. Methods Mol Biol 2010, 649:437-455.
  • [58]Tan S, Guschin D, Davalos A, Lee YL, Snowden AW, Jouvenot Y, Zhang HS, Howes K, McNamara AR, Lai A, Ullman C, Reynolds L, Moore M, Isalan M, Berg LP, Campos B, Qi H, Spratt SK, Case CC, Pabo CO, Campisi J, Gregory PD: Zinc-finger protein-targeted gene regulation: genomewide single-gene specificity. Proc Natl Acad Sci U S A 2003, 100(21):11997-12002.
  • [59]Miller J, McLachlan AD, Klug A: Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 1985, 4(6):1609-1614.
  • [60]Mae M, Langel U: Cell-penetrating peptides as vectors for peptide, protein and oligonucleotide delivery. Curr Opin Pharmacol 2006, 6(5):509-514.
  文献评价指标  
  下载次数:14次 浏览次数:31次