BMC Evolutionary Biology | |
Lack of evolutionary adjustment to ambient temperature in highly specialized cave beetles | |
Ignacio Ribera2  Alexandra Cieslak2  Javier Fresneda1  David Sánchez-Fernández2  Valeria Rizzo2  | |
[1] Museu de Ciències Naturals (Zoologia), Barcelona, Spain;Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta 37–49, Barcelona, 08003, Spain | |
关键词: Subterranean environment; Thermal tolerance; Pyrenees; Adaptation; Acclimation; | |
Others : 1121702 DOI : 10.1186/s12862-015-0288-2 |
|
received in 2014-09-05, accepted in 2015-01-15, 发布年份 2015 | |
【 摘 要 】
Background
A key question in evolutionary biology is the relationship between species traits and their habitats. Caves offer an ideal model to test the adjustment of species to their surrounding temperature, as they provide homogeneous and simple environments. We compared two species living under different thermal conditions within a lineage of Pyrenean beetles highly modified for the subterranean life since the Miocene. One, Troglocharinus fonti, is found in caves at 4-11°C in the ancestral Pyrenean range. The second, T. ferreri, inhabits the coastal area of Catalonia since the early Pliocene, and lives at 14-16°C.
Results
We found no differences in their short term upper thermal limit (ca. 50°C), similar to that of most organisms, or their lower thermal limit (ca. -2.5°C), higher than for most temperate insects and suggesting the absence of cryoprotectants. In longer term tests (7 days) survival between 6-20°C was almost 100% for both species plus two outgroups of the same lineage, but all four died between 23-25°C, without significant differences between them.
Conclusions
Our results suggest that species in this lineage have lost some of the thermoregulatory mechanisms common in temperate insects, as their inferred default tolerance range is larger than the thermal variation experienced through their whole evolutionary history.
【 授权许可】
2015 Rizzo et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150213010247948.pdf | 703KB | download | |
Figure 3. | 17KB | Image | download |
Figure 2. | 13KB | Image | download |
Figure 1. | 59KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Dawson TPS, Jackson T, House JI, Prentice IC, Mace GM: Beyond predictions: biodiversity conservation in a changing climate. Science 2011, 332:53-8.
- [2]Sunday JM, Bates AE, Kearney MR, Colwell RK, Dulvy NK, Longino JT, et al.: Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc Natl Acad Sci U S A 2014, 111:5610-5.
- [3]Uvarov BP: Insects and climate. T Roy Ent Soc London 1931, 79:1-232.
- [4]Bernardo J: Biologically grounded predictions of species resistance and resilience to climate change. Proc Natl Acad Sci U S A 2014, 111:5450-1.
- [5]Culver DC, Pipan T: The biology of caves and other subterranean habitats. Oxford University Press, Oxford; 2009.
- [6]Juan C, Guzik MT, Jaume D, Cooper SJ: Evolution in caves: darwin’s ‘wrecks of ancient life’ in the molecular era. Mol Ecol 2010, 19:3865-80.
- [7]Poulson TL, Culver DC: Diversity in terrestrial cave communities. Ecology 1969, 50:153-8.
- [8]Culver DC: The evolution of aquatic cave communities. Am Nat 1976, 110:945-57.
- [9]Poulson TL, White WB: The cave environment. Science 1969, 165:971-81.
- [10]Janzen DH: Why mountain passes are higher in the tropics? Am Nat 1967, 101:233-49.
- [11]Futuyma DJ, Moreno G: The evolution of ecological specialization. Annu Rev Ecol Syst 1988, 19:207-33.
- [12]Huey RB, Kingsolver JG: Evolution of thermal sensitivity of ectotherm performance. Trends Ecol Evol 1989, 4:131-5.
- [13]Peck LS, Webb KE, Bailey DM: Extreme sensitivity of biological function to temperature in Antarctic marine species. Funct Ecol 2004, 18:625-30.
- [14]Latella L, Bernabò P, Lencioni V: Distribution pattern and thermal tolerance in two cave dwelling leptodirinae coleoptera, cholevidae. Subterranean Biol 2004, 6:81-6.
- [15]Culver DC, Sket B: Hotspots of subterranean biodiversity in caves and wells. J Cave Karst Stud 2000, 62:11-7.
- [16]Culver DC, Deharveng L, Bedos A, Lewis JJ, Madden M, Reddell JR, et al.: The mid-latitude biodiversity ridge in terrestrial cave fauna. Ecography 2006, 29:120-8.
- [17]Faille A, Casale A, Balke M, Ribera I: A molecular phylogeny of Alpine subterranean Trechini. BMC Evol Biol 2013, 13:248. BioMed Central Full Text
- [18]Faille A, Ribera I, Deharveng L, Bourdeau C, Garnery L, Quéinnec E, et al.: A molecular phylogeny shows the single origin of the Pyrenean subterranean Trechini ground beetles (Coleoptera: Carabidae). Mol Phylogenet Evol 2010, 54:97-106.
- [19]Ribera I, Fresneda J, Bucur R, Izquierdo A, Vogler AP, Salgado JM, et al.: Ancient origin of a Western Mediterranean radiation of subterranean beetles. BMC Evol Biol 2010, 10:29. BioMed Central Full Text
- [20]Cieslak A, Fresneda J, Ribera I: Life-history specialization was not an evolutionary dead-end in pyrenean cave beetles. P Roy Soc B Biol Sci 2014, 281:20132978.
- [21]Rizzo V, Comas J, Fadrique F, Fresneda J, Ribera I: Early pliocene range expansion of a clade of subterranean pyrenean beetles. J Biogeogr 2013, 40:1861-73.
- [22]Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A: Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 2005, 25:1965-78.
- [23]Kiehl J, Gent P: The community climate system model, version two. J Climate 2004, 17:3666-82.
- [24]Otto-Bliesner BL, Brady EC, Tomas R, Levis S, Kothavala Z: Last glacial maximum and holocene climate in CCSM3. J Climate 2006, 19:2526-44.
- [25]Salt RW: Principles of insect cold-hardiness. Annu Rev Ent 1961, 95:1190-202.
- [26]Lee RE Jr: A primer on insect cold-tolerance. In Low temperature biology of insects. Edited by Denlinger DL, Lee RE Jr. Cambridge University Press, Cambridge; 2010:1-34.
- [27]Calosi P, Bilton DT, Spicer JI, Votier SC, Atfield A: What determines a species’ geographical range? thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera: Dytiscidae). J Anim Ecol 2010, 79:194-204.
- [28]Sunday JM, Bates AE, Dulvy NK: Global analysis of thermal tolerance and latitude in ectotherms. P Roy Soc B Biol Sci 2011, 278:1823-30.
- [29]Hidalgo-Galiana A, Sánchez-Fernández D, Bilton DT, Cieslak A, Ribera I: Thermal niche evolution and geographical range expansion in a species complex of western mediterranean diving beetles. BMC Evol Biol 2014, 14:187. BioMed Central Full Text
- [30]Calosi P, Bilton DT, Spicer JI, Atfield A: Thermal tolerance and geographic range size in the Agabus brunneus group of European diving beetles (Coleoptera: Dytiscidae). J Biogeogr 2008, 35:295-305.
- [31]Sánchez-Fernández D, Calosi P, Atfield A, Arribas P, Velasco J, Spicer JI, et al.: Reduced salinities compromise the thermal tolerance of hypersaline specialist diving beetles. Physiol Entomol 2010, 35:265-73.
- [32]Arribas P, Velasco J, Abellán P, Sánchez-Fernández D, Andújar C, Calosi P, et al.: Dispersal ability rather than ecological tolerance drives differences in range size between lentic and lotic water beetles (Coleoptera: Hydrophilidae). J Biogeogr 2012, 39:984-94.
- [33]Salgado JM, Blas M, Fresneda J: Coleoptera: cholevidae. In Fauna Iberica. Vol. 31. Consejo Superior de Investigaciones Científicas, Madrid; 2008.
- [34]Fresneda J, Hernando C: Speonomus kryophilos n. sp. (Coleoptera, Cholevidae) nuevo Bathysciinae del Pirineo catalán. Ilerda Ciències 1991, 49:259-64.
- [35]Somero GN: Proteins and temperature. Annu Rev Physiol 1995, 57:43-68.
- [36]Davis AJ, Jenkinson LS, Lawton JH, Shorrocks B, Wood S: Making mistakes when predicting shifts in species range in response to global warming. Nature 1998, 391:783-6.
- [37]Kearney M: Habitat, environment and niche: what are we modelling? Oikos 2006, 115:186-91.
- [38]Sánchez-Fernández D, Aragón P, Bilton DT, Lobo JM: Assessing the congruence of thermal niche estimations derived from distribution and physiological data. a test using diving beetles. PLoS One 2012, 7:e48163.
- [39]Araújo MB, Ferri-Yáñez F, Bozinovic F, Marquet PA, Valladares F, Chown SL: Heat freezes niche evolution. Ecol Lett 2013, 16:1206-19.
- [40]Delay B: Milieu souterrain et écophysiologique de la reproduction et du développement des Coléoptères Bathysciinae hypogés. Mém Biospéol 1978, 5:1-349.
- [41]Frederich M, Pörtner HO: Oxygen limitation of thermal tolerance defined by cardiac and ventilatory performance in spider crab, Maja squinado. Am J Physiol Reg I 2000, 279:R1531-8.
- [42]Pörtner HO: Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Nature 2001, 88:137-46.
- [43]McCue MD, De Los Santos R: Upper thermal limits of insects are not the result of insufficient oxygen delivery. Physiol Biochem Zool 2013, 86:257-65.
- [44]Verberk WCEP, Bilton DT: Respiratory control in aquatic insects dictates their vulnerability to global warming. Biol Lett 2013, 9:20130473.
- [45]Moldovan OT, Jalžić B, Erichsen E: Adaptation of the mouth parts in some subterranean Cholevinae (Coleoptera, Leiodidae). Natura Croatica 2004, 13:1-18.
- [46]Paoletti MG, Beggio M, Dreon AL, Pamio A, Gomiero T, Brilli M, et al.: A new foodweb based on microbes in calcitic caves: the Cansiliella (Beetles) case in Northern Italy. Int J Speleol 2011, 40:45-52.
- [47]Lencioni V, Bernabò P, Latella L: Cold resistance in two species of cave-dwelling beetles coleoptera: cholevidae. J Therm Biol 2010, 35:354-9.
- [48]Bernabò P, Latella L, Jousson O, Lencioni V: Cold stenothermal cave-dwelling beetles do have an HSP70 heat shock response. J Therm Biol 2011, 36:206-8.
- [49]Mermillon-Blondi F, Lefour C, Lalouette L, Renault D, Malard F, Simon L, et al.: Thermal tolerance breadths among groundwater crustaceans living in a thermally constant environment. J Exp Biol 2013, 216:1683-94.
- [50]Eme D, Malard F, Colson-Proch C, Jean P, Calvignac S, Konecny-Dupré L, et al.: Integrating phylogeography, physiology and habitat modelling to explore species range determinants. J Biogeogr 2014, 41:687-99.
- [51]Zachos J, Pagani M, Sloan L, Thomas E, Billups K: Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 2001, 292:686-93.