期刊论文详细信息
BMC Genomics
Single-cell transcriptomics using spliced leader PCR: Evidence for multiple losses of photosynthesis in polykrikoid dinoflagellates
Brian S. Leander2  Patrick J. Keeling2  Curtis A. Suttle4  Richard A. White1  Gregory S. Gavelis3 
[1] Department of Microbiology & Immunology, University of British Columbia, Vancouver V6T1Z4, BC, Canada;Department of Botany, University of British Columbia, Vancouver V6T1Z4, BC, Canada;Department of Zoology, University of British Columbia, Vancouver V6T1Z4, BC, Canada;Department of Earth, Ocean and Atmospheric Sciences, Vancouver V6T1Z4, BC, Canada
关键词: Spliced leader;    Polykrikos;    Peridinin;    Mixotrophy;    Endosymbiosis;    Dinoflagellates;    Chloroplast;   
Others  :  1220319
DOI  :  10.1186/s12864-015-1636-8
 received in 2014-12-19, accepted in 2015-05-18,  发布年份 2015
PDF
【 摘 要 】

Background

Most microbial eukaryotes are uncultivated and thus poorly suited to standard genomic techniques. This is the case for Polykrikos lebouriae, a dinoflagellate with ultrastructurally aberrant plastids. It has been suggested that these plastids stem from a novel symbiosis with either a diatom or haptophyte, but this hypothesis has been difficult to test as P. lebouriae dwells in marine sand rife with potential genetic contaminants.

Results

We applied spliced-leader targeted PCR (SLPCR) to obtain dinoflagellate-specific transcriptomes on single-cell isolates of P. lebouriae from marine sediments. Polykrikos lebouriae expressed nuclear-encoded photosynthetic genes that were characteristic of the peridinin-plastids of dinoflagellates, rather than those from a diatom of haptophyte. We confirmed these findings at the genomic level using multiple displacement amplification (MDA) to obtain a partial plastome of P. lebouriae.

Conclusion

From these data, we infer that P. lebouriae has retained the peridinin plastids ancestral for dinoflagellates as a whole, while its closest relatives have lost photosynthesis multiple times independently. We discuss these losses with reference to mixotrophy in polykrikoid dinoflagellates. Our findings demonstrate new levels of variation associated with the peridinin plastids of dinoflagellates and the usefulness of SLPCR approaches on single cell isolates. Unlike other transcriptomic methods, SLPCR has taxonomic specificity, and can in principle be adapted to different splice-leader bearing groups.

【 授权许可】

   
2015 Gavelis et al.

【 预 览 】
附件列表
Files Size Format View
20150722022252545.pdf 1355KB PDF download
Fig. 3. 57KB Image download
Fig. 2. 50KB Image download
Fig. 1. 41KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

【 参考文献 】
  • [1]Keeling PJ. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution, in Annual Review of Plant Biology, Vol 64, S.S. Merchant, Editor. Annual Reviews, Palo Alto, CA. 2013. p. 583–607.
  • [2]Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, et al. Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature. 2012;492(7427):59–65.
  • [3]Archibald JM. The evolution of algae by secondary and tertiary endosymbiosis, in Genomic Insights into the Biology of Algae, G. Piganeau, Editor. Academic Press, Oxford. 2012. p. 87–118.
  • [4]Imanian B, Pombert J-F, and Keeling PJ. The complete plastid genomes of the two ‘dinotoms’ Durinskia baltica and Kryptoperidinium foliaceum. Plos One, 2010. 5(5).
  • [5]Bhattacharya D, Pelletreau KN, Price DC, Sarver KE, and Rumpho ME. Genome analysis of Elysia chlorotica egg dna provides no evidence for horizontal gene transfer into the germ line of this kleptoplastic mollusc. Mol Biol Evol. 2013;30(8):1843–52.
  • [6]Pillet L, Pawlowski J. Transcriptome analysis of foraminiferan Elphidium margaritaceum questions the role of gene transfer in kleptoplastidy. Mol Biol Evol. 2013; 30(1):66-69.
  • [7]Jeong HJ, Kim SK, Kim JS, Kim ST, Yoo YD, and Yoon JY. Growth and grazing rates of the heterotrophic dinoflagellate Polykrikos kofoidii on red-tide and toxic dinoflagellates. J Eukaryot Microbiol. 2001;48(3):298–308.
  • [8]Tang YZ, Harke MJ, Gobler CJ. Morphology, phylogeny, dynamics, and ichthyotoxicity of Pheopolykrikos hartmannii (Dinophyceae) isolates and blooms from New York USA. J Phycol. 2013; 49(6):1084-1094.
  • [9]Qiu D, Huang L, Liu S, Zhang H, and Lin S. Apical Groove Type and Molecular Phylogeny Suggests Reclassification of Cochlodinium geminatum as Polykrikos geminatum. Plos One, 2013. 8(8).
  • [10]Hoppenrath M, Yubuki N, Bachvaroff TR, Leander BS. et al. Re-classification of Pheopolykrikos hartmannii as Polykrikos (Dinophyceae) based partly on the ultrastructure of complex extrusomes. Eur J Protistol. 2010;46(1):29–37.
  • [11]Hoppenrath M, Yubuki N, Bachvaroff TR, and Leander BS.. Morphology and phylogeny of the pseudocolonial dinoflagellates Polykrikos lebouriae and Polykrikos herdmanae n. sp. Protist. 2007;158(2):209–27.
  • [12]Hoppenrath M, Leander BS. Character evolution in polykrikoid dinoflagellates. J Phycol. 2007; 43(2):366-377.
  • [13]Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, et al. Comprehensive human genome amplification using multiple displacement amplification. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(8): p. 5261–5266.
  • [14]Huan Z, Hou Y, Miranda L, Campbell, DA, Sturm NR, Gaasterland T, et al. Spliced leader RNA trans-splicing in dinoflagellates. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(11): p. 4618–4623.
  • [15]Zhang H, Zhuanga Y, Gill J, Lin S. Proof that dinoflagellate spliced leader (dinoSL) is a useful hook for fishing dinoflagellate transcripts from mixed microbial samples: Symbiodinium kawagutii as a case study. Protist. 2013;164(4):510–27.
  • [16]Abd H, Johansson T, Golovliov I, Sandström G, and Forsman M. Survival and growth of Francisella tularensis in Acanthamoeba castellanii. Appl Environ Microbiol. 2003;69(1):600–6.
  • [17]Schrallhammer M et al.. Detection of a novel subspecies of Francisella noatunensis as endosymbiont of the ciliate Euplotes raikovi. Microb Ecol. 2011; 61(2):455-464.
  • [18]Lasken RS. Genomic sequencing of uncultured microorganisms from single cells. Nat Rev Microbiol. 2012; 10(9):631-640.
  • [19]Saldarriaga JF, Taylor FJ, Keeling PJ, and Cavalier-Smith T. Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements. J Mol Evol. 2001;53(3):204–13.
  • [20]Hehenberger E, Imanian B, Burki F, and Keeling PJ. Evidence for the retention of two evolutionary distinct plastids in dinoflagellates with diatom endosymbionts. Genome Biol Evol. 2014;6(9):2321–34.
  • [21]Nassoury N, Cappadocia M, Morse D. Plastid ultrastructure defines the protein import pathway in dinoflagellates. J Cell Sci. 2003;116((14):2867–74.
  • [22]Patron NJ, Waller RF, Archibald JM, Keeling PJ. Complex protein targeting to dinoflagellate plastids. J Mol Biol. 2005;348(4):1015–24.
  • [23]Matsuyama Y, Miyamoto M, Kotani Y. Grazing impacts of the heterotrophic dinoflagellate Polykrikos kofoidii on a bloom of Gymnodinium catenatum. Aquat Microb Ecol. 1999; 17(1):91-98.
  • [24]Raven JA. A cost-benefit-analysis of photon-absorption by photosynthetic unicells. New Phytol. 1984; 98(4):593-625.
  • [25]Lewitus AJ, Glasgow HB, Burkholder JM. Kleptoplastidy in the toxic dinoflagellate Pfiesteria piscicida (Dinophyceae). J Phycol. 1999; 35(2):303-312.
  • [26]Dorrell RG and Howe CJ. Functional remodeling of RNA processing in replacement chloroplasts by pathways retained from their predecessors. Proceedings of the National Academy of Sciences of the United States of America, 2012. 109(46): p. 18879–18884.
  • [27]Jackson CJ, Gornik SG, Waller RF. A tertiary plastid gains RNA editing in its new host. Mol Biol Evol. 2013; 30(4):788-792.
  • [28]Gomez F, Moreira D, Lopez-Garcia P. Molecular phylogeny of noctilucoid dinoflagellates (Noctilucales, Dinophyceae). Protist. 2010; 161(3):466-478.
  • [29]Daugbjerg N, Jensen MH, Hansen PJ. Using nuclear-encoded lsu and ssu rDNA sequences to identify the eukaryotic endosymbiont in Amphisolenia bidentata (Dinophyceae). Protist. 2013; 164(3):411-422.
  • [30]Nishitani G, Nagai S, Hayakawa S, Kosaka Y, Sakurada K, Kamiyama T, and Gojobori T. Multiple plastids collected by the dinoflagellate Dinophysis mitra through kleptoplastidy. Appl Environ Microbiol. 2012;78(3):813–21.
  • [31]Koike K, Takishita K. Anucleated cryptophyte vestiges in the gonyaulacalean dinoflagellates Amylax buxus and Amylax triacantha (Dinophyceae). Phycol Res. 2008; 56(4):301-311.
  • [32]Lin S, Zhang H, Zhuang Y, Tran B, and Gill J. Spliced leader-based metatranscriptoimc analyses lead to recognition of hidden genomic features in dinoflagellates. Proceedings of the National Acadamy of Science of the United States of America, 2010. 107(46): p. 20033–38.
  • [33]Bitar M, Boroni M, Macedo AM, Machado CR, and Franco GR. The spliced leader trans-splicing mechanism in different organisms: molecular details and possible biological roles. Front Genet. 2013;4:199–9.
  • [34]Uhlig G, Thiel H, Gray JS. Quantitative separation of meiofauna - comparison of methods. Helgoländer Meeresun. 1973; 25(1):173-195.
  • [35]White RA, Quake SR, Curr K. Digital PCR provides absolute quantitation of viral load for an occult RNA virus. J Virol Methods. 2012; 179(1):45-50.
  • [36]Boisvert S, Laviolette F, Corbeil J. Ray: Simultaneous assembly of reads from a mix of high-throughput sequencing technologies. J Comput Biol. 2010; 17(11):1519-1533.
  • [37]Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, Kubal M, et al. The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics, 2008. 9:386.
  • [38]Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004; 5:1-19. BioMed Central Full Text
  • [39]Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006; 22(21):2688-2690.
  • [40]Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001; 17(8):754-755.
  • [41]Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003; 19(12):1572-1574.
  • [42]Nielsen H and Krogh A. Prediction of signal peptides and signal anchors by a hidden Markov model. International Conference on Intelligent Systems for Molecular Biology, 1998. 6: p. 122–30.
  • [43]Bendtsen JD, Nielsen H, von Heijne G, and Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol. 2004;340(4):783–95.
  • [44]Sonnhammer EL, von Heijne G, and Krogh A. A hidden Markov model for predicted transmembrane helices in protein sequences. International Conference on Intelligent Systems for Molecular Biology, 1998. (6): p. 175–82.
  • [45]Clamp M, Cuff J, Searle SM, and Barton GJ. The Jalview Java alignment editor. Bioinformatics. 2004;20(3):426–7.
  文献评价指标  
  下载次数:31次 浏览次数:27次