期刊论文详细信息
BMC Evolutionary Biology
Sensory trait variation in an echolocating bat suggests roles for both selection and plasticity
Jacqueline M Bishop1  David S Jacobs1  Lizelle J Odendaal1 
[1] Department of Biological Sciences, University of Cape Town, 7701 Cape Town, South Africa
关键词: Rhinolophidae;    Sensory ecology;    Gene flow;    Mitochondrial DNA;    Neutral evolution;    Resting echolocation frequency;   
Others  :  857579
DOI  :  10.1186/1471-2148-14-60
 received in 2013-10-24, accepted in 2014-03-20,  发布年份 2014
PDF
【 摘 要 】

Background

Across heterogeneous environments selection and gene flow interact to influence the rate and extent of adaptive trait evolution. This complex relationship is further influenced by the rarely considered role of phenotypic plasticity in the evolution of adaptive population variation. Plasticity can be adaptive if it promotes colonization and survival in novel environments and in doing so may increase the potential for future population differentiation via selection. Gene flow between selectively divergent environments may favour the evolution of phenotypic plasticity or conversely, plasticity itself may promote gene flow, leading to a pattern of trait differentiation in the presence of gene flow. Variation in sensory traits is particularly informative in testing the role of environment in trait and population differentiation. Here we test the hypothesis of ‘adaptive differentiation with minimal gene flow’ in resting echolocation frequencies (RF) of Cape horseshoe bats (Rhinolophus capensis) across a gradient of increasingly cluttered habitats.

Results

Our analysis reveals a geographically structured pattern of increasing RF from open to highly cluttered habitats in R. capensis; however genetic drift appears to be a minor player in the processes influencing this pattern. Although Bayesian analysis of population structure uncovered a number of spatially defined mitochondrial groups and coalescent methods revealed regional-scale gene flow, phylogenetic analysis of mitochondrial sequences did not correlate with RF differentiation. Instead, habitat discontinuities between biomes, and not genetic and geographic distances, best explained echolocation variation in this species. We argue that both selection for increased detection distance in relatively less cluttered habitats and adaptive phenotypic plasticity may have influenced the evolution of matched echolocation frequencies and habitats across different populations.

Conclusions

Our study reveals significant sensory trait differentiation in the presence of historical gene flow and suggests roles for both selection and plasticity in the evolution of echolocation variation in R. capensis. These results highlight the importance of population level analyses to i) illuminate the subtle interplay between selection, plasticity and gene flow in the evolution of adaptive traits and ii) demonstrate that evolutionary processes may act simultaneously and that their relative influence may vary across different environments.

【 授权许可】

   
2014 Odendaal et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723082511675.pdf 3685KB PDF download
94KB Image download
58KB Image download
78KB Image download
48KB Image download
30KB Image download
63KB Image download
【 图 表 】

【 参考文献 】
  • [1]Haldane JBS: The theory of a cline. J Genet 1948, 48:277-284.
  • [2]Slatkin M: Gene flow and selection in a cline. Genetics 1973, 75:733-756.
  • [3]Hendry AP, Day T, Taylor EB: Population mixing and the adaptive divergence of quantitative traits in discrete populations: a theoretical framework for empirical tests. Evolution 2001, 55:459-466.
  • [4]Tobias JA, Aben J, Brumfield RT, Derryberry EP, Halfwerk W, Slabbekoorn H, Seddon N: Song divergence by sensory drive in Amazonian birds. Evolution 2010, 64:2820-2839.
  • [5]Wang IJ, Summers K: Genetic structure is correlated with phenotypic divergence rather than geographic isolation in the highly polymorphic strawberry poison‒dart frog. Mol Ecol 2010, 19:447-458.
  • [6]González C, Ornelas J, Gutiérrez-Rodríguez C: Selection and geographic isolation influence hummingbird speciation: genetic, acoustic and morphological divergence in the wedge-tailed sabrewing (Campylopterus curvipennis). BMC Evol Biol 2011, 11:38. BioMed Central Full Text
  • [7]Puechmaille SJ, Gouilh MA, Piyapan P, Yokubol M, Mie KM, Bates PJ, Teeling EC: The evolution of sensory divergence in the context of limited gene flow in the bumblebee bat. Nat Commun 2011, 2:573.
  • [8]Edelaar P, Alonso D, Lagerveld S, Senar JC, Björklund M: Population differentiation and restricted gene flow in Spanish crossbills: not isolation‒by‒distance but isolation‒by‒ecology. J Evol Biol 2012, 25:417-430.
  • [9]Antonovics J: Evolution in closely adjacent plant populations: VI: manifold effects of gene flow. Heredity 1968, 23:507-524.
  • [10]Slatkin M: Gene flow and the geographic structure of natural populations. Science 1987, 236:787-792.
  • [11]Räsänen K, Hendry AP: Disentangling interactions between adaptive divergence and gene flow when ecology drives diversification. Ecol Lett 2008, 11:624-636.
  • [12]Niemiller ML, Fitzpatrick BM, Miller BT: Recent divergence with gene flow in Tennessee cave salamanders (Plethodontidae: Gyrinophilus) inferred from gene genealogies. Mol Ecol 2008, 17:2258-2275.
  • [13]Milá B, Wayne RK, Fitze P, Smith TB: Divergence with gene flow and fine‒scale phylogeographical structure in the wedge‒billed woodcreeper, Glyphorynchus spirurus, a Neotropical rainforest bird. Mol Ecol 2009, 18:2979-2995.
  • [14]Ribeiro ÂM, Lopes RJ, Bowie RC: Historical demographic dynamics underlying local adaptation in the presence of gene flow. Ecol Evol 2012, 2:2710-2721.
  • [15]Muñoz MM, Crawford NG, McGreevy TJ, Messana NJ, Tarvin RD, Revell LJ, Zandvliet RM, Hopwood JM, Mock E, Schneider AL, Schneider CJ: Divergence in coloration and ecological speciation in the Anolis marmoratus species complex. Mol Ecol 2013, 22:2668-2682.
  • [16]Nosil P: The role of selection and gene flow in the evolution of sexual isolation in Timema walking sticks and other Orthopteroids. J Orthop Res 2005, 14:247-253.
  • [17]Nosil P, Crespi BJ: Does gene flow constrain adaptive divergence or vice versa? A test using ecomorphology and sexual isolation in Timema cristinae walking‒sticks. Evolution 2004, 58:102-112.
  • [18]Crispo E: Modifying effects of phenotypic plasticity on interactions among natural selection, adaptation and gene flow. J Evol Biol 2008, 21:1460-1469.
  • [19]Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP: Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol Evol 2010, 25:459-467.
  • [20]Via S, Gomulkiewicz R, De Jong G, Scheiner SM, Schlichting CD, Van Tienderen PH: Adaptive phenotypic plasticity: consensus and controversy. Trends Ecol Evol 1995, 10:212-217.
  • [21]West-Eberhard MJ: Developmental plasticity and evolution. New York: Oxford University Press; 2003.
  • [22]Richards CL, Bossdorf O, Pigliucci M: What role does heritable epigenetic variation play in phenotypic evolution? Bioscience 2010, 60:232-237.
  • [23]Ghalambor CK, McKay JK, Carroll SP, Reznick DN: Adaptive versus non‒adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 2007, 21:394-407.
  • [24]Ord TJ, Stamps JA, Losos JB: Adaptation and plasticity of animal communication in fluctuating environments. Evolution 2010, 64:3134-3148.
  • [25]Richter‒Boix A, Teplitsky C, Rogell B, Laurila A: Local selection modifies phenotypic divergence among Rana temporaria populations in the presence of gene flow. Mol Ecol 2010, 19:716-731.
  • [26]Thibert‒Plante X, Hendry AP: The consequences of phenotypic plasticity for ecological speciation. J Evol Biol 2011, 24:326-342.
  • [27]Lundsgaard‒Hansen B, Matthews B, Vonlanthen P, Taverna A, Seehausen O: Adaptive plasticity and genetic divergence in feeding efficiency during parallel adaptive radiation of whitefish (Coregonus spp.). J Evol Biol 2013, 26:483-498.
  • [28]Pelletier F, Reale D, Garant D, Coltman DW, Festa‒Bianchet M: Selection on heritable seasonal phenotypic plasticity of body mass. Evolution 2007, 61:1969-1979.
  • [29]Jourdan‒Pineau H, David P, Crochet PA: Phenotypic plasticity allows the Mediterranean parsley frog Pelodytes punctatus to exploit two temporal niches under continuous gene flow. Mol Ecol 2012, 21:876-886.
  • [30]Crispo E, Chapman LJ: Population genetic structure across dissolved oxygen regimes in an African cichlid fish. Mol Ecol 2008, 17:2134-2148.
  • [31]Ali MA: Sensory Ecology. New York: Plenum Press; 1978.
  • [32]Boughman JW: How sensory drive can promote speciation. Trends Ecol Evol 2002, 17:571-577.
  • [33]Dangles O, Irschick D, Chittka L, Casas J: Variability in sensory ecology: expanding the bridge between physiology and evolutionary biology. Q Rev Biol 2009, 84:51-74.
  • [34]Wilkins MR, Seddon N, Safran RJ: Evolutionary divergence in acoustic signals: causes and consequences. Trends Ecol Evol 2013, 28:156-166.
  • [35]Phillips CT, Johnston CE: Geographical divergence of acoustic signals in Cyprinella galactura the whitetail shiner (Cyprinidae). Anim Behav 2008, 75:617-626.
  • [36]Pinto-Juma G, Simões PC, Seabra SG, Quartau JA: Calling song structure and geographic variation in Cicada orni Linnaeus (Hemiptera: Cicadidae). Zool Stud 2005, 44:81-94.
  • [37]Lemmon EM: Diversification of conspecific signals in sympatry: geographic overlap drives multidimensional reproductive character displacement in frogs. Evolution 2009, 63:1155-1170.
  • [38]Podos J: Acoustic discrimination of sympatric morphs in Darwin’s finches: a behavioural mechanism for assortative mating? Phil Trans R Soc B 2010, 365:1031-1039.
  • [39]Thinh VN, Hallam C, Roos C, Hammerschmidt K: Concordance between vocal and genetic diversity in crested gibbons. BMC Evol Biol 2011, 11:36. BioMed Central Full Text
  • [40]Beckers OM, Schul J: Developmental plasticity of mating calls enables acoustic communication in diverse environments. Proc R Soc B Biol Sci 2008, 275:1243-1248.
  • [41]Ziegler L, Arim M, Narins PM: Linking amphibian call structure to the environment: the interplay between phenotypic flexibility and individual attributes. Behav Ecol 2011, 22:520-526.
  • [42]Griffin DR: Echolocation in blind men, bats, and radar. Science 1944, 100:589-590.
  • [43]Griffin DR: Bat sounds under natural conditions, with evidence for echolocation of insect prey. J Exp Zool 1953, 123:435-465.
  • [44]Knörnschild M, Jung K, Nagy M, Metz M, Kalko E: Bat echolocation calls facilitate social communication. Proc R Soc B 2012, 279:4827-4835.
  • [45]Neuweiler G: Foraging, echolocation and audition in bats. Naturwissenschaften 1984, 71:446-455.
  • [46]Hiryu S, Katsura K, Nagato T, Yamazaki H, Lin LK, Watanabe Y, Riquimaroux H: Intra-individual variation in the vocalized frequency of the Taiwanese leaf-nosed bat, Hipposideros terasensis, influenced by conspecific colony members. J Comp Physiol A 2006, 192:807-815.
  • [47]Armstrong KN, Coles RB: Echolocation call frequency differences between geographic isolates of Rhinonicteris aurantia (Chiroptera: Hipposideridae): implications of nasal chamber size. J Mammal 2007, 88:94-104.
  • [48]Heller K-G, Von Helversen O: Resource partitioning of sonar frequency bands in rhinolophoid bats. Oecologia 1989, 80:178-186.
  • [49]Barclay RMR, Fullard JH, Jacobs DS: Variation in the echolocation calls of the hoary bat (Lasiurus cinereus): influence of body size, habitat structure, and geographic location. Can J Zool 1999, 77:530-534.
  • [50]Wund MA: Variation in the echolocation calls of little brown bats (Myotis lucifugus) in response to different habitats. Am Midl Nat 2006, 156:99-108.
  • [51]Houston RD, Boonman AM, Jones G: Do echolocation signal parameters restrict bats’ choice of prey? In Echolocation in Bats and Dolphins. Edited by Thomas JA, Moss CF, Vater M. Chicago: University of Chicago Press; 2004:339-345.
  • [52]Jones G: Does echolocation constrain the evolution of body size in bats? Symp Zool Soc Lond 1996, 69:111-128.
  • [53]Russo D, Jones G, Mucedda M: Influence of age, sex and body size on the echolocation calls of Mediterranean and Mehely’s horseshoe bats, Rhinolophus euryale and R. mehelyi (Chiroptera: Rhinolophidae). Mammalia 2001, 65:429-436.
  • [54]Siemers BM, Beedholm K, Dietz C, Dietz I, Ivanova T: Is species identity, sex, age or individual quality conveyed by echolocation call frequency in European horseshoe bats? Acta Chiropterol 2005, 7:259-274.
  • [55]Jones G, Teeling EC: The evolution of echolocation in bats. Trends Ecol Evol 2006, 21:149-156.
  • [56]Schuller G, Pollak G: Disproportionate frequency representation in the inferior colliculus of doppler-compensating greater horseshoe bats: evidence for an acoustic fovea. J Comp Physiol 1979, 132:47-54.
  • [57]Schuller G, Beuter K, Schnitzler HU: Response to frequency shifted artificial echoes in the bat Rhinolophus ferrumequinum. J Comp Physiol A 1974, 89:275-286.
  • [58]Schnitzler HU, Kalko EKV: Echolocation by insect-eating bats. Bioscience 2001, 51:557-569.
  • [59]Jones G, Rayner JMV: Foraging behaviour and echolocation of wild horseshoe bats Rhinolophus ferrumequinum and R. hipposideros (Chiroptera, Rhinolophidae). Behav Ecol Sociobiol 1989, 25:183-191.
  • [60]Schnitzler HU, Denzinger A: Auditory fovea and Doppler shift compensation: adaptations for flutter detection in echolocating bats using CF-FM signals. J Comp Physiol A 2011, 197:541-559.
  • [61]Rübsamen R: Ontogenesis of the echolocation system in the Rufous horseshoe bat, Rhinolophus rouxi (audition and vocalisation in early postnatal development). J Comp Physiol A 1987, 161:899-913.
  • [62]Matsumura S: Mother-infant communication in the horseshoe bat (Rhinolophus ferrumequinum nippon): development of vocalization. J Mammal 1979, 60:76-84.
  • [63]Jones G, Ransome RD: Echolocation calls of bats are influenced by maternal effects and change over a lifetime. Proc R Soc Lond B 1993, 252:125-128.
  • [64]Boughman JW, Moss CF: Social sounds: vocal learning and development of mammal and bird calls. In Acoustic Communication. Edited by Simmons AM, Popper AN, Fay RR. New York: Springer-Verlag; 2003:138-224.
  • [65]Kingston T, Lara MC, Jones G, Akbar Z, Kunz TH, Schneider CJ: Acoustic divergence in two cryptic Hipposideros species: a role for social selection? Proc R Soc Lond B 2001, 268:1381-1386.
  • [66]Yoshino H, Armstrong KN, Izawa M, Yokoyama J, Kawata M: Genetic and acoustic population structuring in the Okinawa least horseshoe bat: are intercolony acoustic differences maintained by vertical maternal transmission? Mol Ecol 2008, 17:4978-4991.
  • [67]Jacobs DS, Barclay RMR, Walker MH: The allometry of echolocation call frequencies of insectivorous bats: why do some species deviate from the pattern? Oecologia 2007, 152:583-594.
  • [68]Russo D, Mucedda M, Bello M, Biscardi S, Pidinchedda E, Jones G: Divergent echolocation call frequencies in insular rhinolophids (Chiroptera): a case of character displacement? J Biogeogr 2007, 34:2129-2138.
  • [69]Chen SF, Jones G, Rossiter SJ: Determinants of echolocation call frequency variation in the Formosan lesser horseshoe bat (Rhinolophus monoceros). Proc R Soc B 2009, 276:3901-3909.
  • [70]Kingston T, Rossiter SJ: Harmonic-hopping in Wallacea’s bats. Nature 2004, 429:654-657.
  • [71]Guillén A, Juste BJ, Ibáñez C: Variation in the frequency of echolocation calls of Hipposideros ruber in the Gulf of Guinea: an exploration of the adaptive meaning of the constant frequency value in Rhinolophoid CF bats. J Evol Biol 2000, 13:70-80.
  • [72]Jiang T, Metzner W, You Y, Liu S, Lu G, Li S, Feng J: Variation in the resting frequency of Rhinolophus pusillus in Mainland China: effect of climate and implications for conservation. J Acoust Soc Am 2010, 128:2204-2211.
  • [73]Odendaal LJ, Jacobs DS: Morphological correlates of echolocation frequency in the endemic Cape horseshoe bat, Rhinolophus capensis (Chiroptera: Rhinolophidae). J Comp Physiol A 2011, 197:435-446.
  • [74]Francis CM, Habersetzer J: Interspecific and intraspecific variation in echolocation call frequency and morphology of horseshoe bats, Rhinolophus and Hipposideros. In Bat Biology and Conservation. Edited by Kunz TH, Racey PA. Washington DC: Smithsonian Institute Press; 1998:169-179.
  • [75]Duellman WE, Pyles RA: Acoustic resource partitioning in anuran communities. Copeia 1983, 1983:639-649.
  • [76]Jones G, Barlow KE: Cryptic species of echolocating bats. In Echolocation in Bats and Dolphins. Edited by Thomas JA, Moss CF, Vater M. Chicago: University of Chicago Press; 2004:345-349.
  • [77]Clare EL, Adams AM, Maya-Simões AZ, Eger JL, Hebert PD, Fenton MB: Diversification and reproductive isolation: cryptic species in the only New World high duty cycle bat: Pteronotus parnellii. BMC Evol Biol 2013, 13:26. BioMed Central Full Text
  • [78]Thabah A, Rossiter SJ, Kingston T, Zhang S, Parsons S, Mya KM, Jones G: Genetic divergence and echolocation call frequency in cryptic species of Hipposideros larvatus sl (Chiroptera: Hipposideridae) from the Indo‒Malayan region. Biol J Linn Soc 2006, 88:119-130.
  • [79]Liu Y, Feng J, Metzner W: Different auditory feedback control for echolocation and communication in horseshoe bats. PloS One 2013, 8:e62710.
  • [80]Furusawa Y, Hiryu S, Kobayasi KI, Riquimaroux H: Convergence of reference frequencies by multiple CF–FM bats (Rhinolophus ferrumequinum nippon) during paired flights evaluated with onboard microphones. J Comp Physiol A 2012, 198:683-693.
  • [81]Hage SR, Jiang T, Berquist SW, Feng J, Metzner W: Ambient noise induces independent shifts in call frequency and amplitude within the Lombard effect in echolocating bats. PNAS 2013, 110:4063-4068.
  • [82]Taylor PJ, Stoffberg S, Monadjem A, Schoeman MC, Bayliss J, Cotterill FP: Four new bat species (Rhinolophus hildebrandtii complex) reflect Plio-Pleistocene divergence of dwarfs and giants across an Afromontane archipelago. PloS One 2012, 7:e41744.
  • [83]Stoffberg S, Schoeman MC, Matthee CA: Correlated genetic and ecological diversification in a widespread southern African horseshoe bat. PloS One 2012, 7:e31946.
  • [84]Rutherford MC, Mucina L, Powrie LW: Biomes and bioregions of southern Africa. In The Vegetation of South Africa, Lesotho and Swaziland: Strelitzia 19. Edited by Mucina L, Rutherford MC. Pretoria: South African National Biodiversity Institute; 2006:30-51.
  • [85]Linder HP, Johnson SD, Kuhlmann M, Matthee CA, Nyffeler R, Swartz E: Biotic diversity in the Southern African winter-rainfall region. Curr Opin Environ Sustain 2010, 2:109-116.
  • [86]Anthony EL: Age determination in bats. In Ecological and Behavioural Methods for the Study of Bats. Edited by Kunz TH. Washington DC: Smithsonian Institute Press; 1988:47-58.
  • [87]Jacobs DS, Babiker H, Bastian A, Kearney T, van Eeden R, Bishop JM: Phenotypic convergence in genetically distinct lineages of a Rhinolophus species complex (Mammalia, Chiroptera). PloS One 2013, 8:e82614.
  • [88]Neuweiler G: Foraging ecology and audition in echolocating bats. Trends Ecol Evol 1989, 4:160-166.
  • [89]Worthington WJ, Barratt E: A non-lethal method of tissue sampling for genetic studies of chiropterans. Bat Res News 1996, 37:1-4.
  • [90]Hoelzel AR, Hancock JM, Dover GA: Evolution of the cetacean mitochondrial d-loop region. Mol Biol Evol 1991, 8:475-493.
  • [91]Wilkinson GS, Chapman AM: Length and sequence variation in evening bat D-loop mtDNA. Genetics 1991, 128:607-617.
  • [92]Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999, 41:95-98.
  • [93]Nei M: Molecular evolutionary genetics. New York: Columbia University Press; 1987.
  • [94]Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25:1451-1452.
  • [95]McCulloch CE, Searle SR: Generalized, linear and mixed models. New York: Willey; 2000.
  • [96]Freckleton RP: Dealing with collinearity in behavioural and ecological data: model averaging and the problems of measurement error. Behav Ecol Sociobiol 2011, 65:91-101.
  • [97]Akaike H: Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory. Edited by Petrov BN, Czàke F. Budapest: Akademiai Kiadó; 1973:267-281.
  • [98]Burnham KP, Anderson DR: Model selection and multi-model inference: a practical information-theoretic approach. New York: Springer-Verlag; 2002.
  • [99]Burnham KP, Anderson DR: Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 2004, 33:261-304.
  • [100]Turner W, Spector S, Gardiner N, Fladeland M, Sterling E, Steininger M: Remote sensing for biodiversity science and conservation. Trends Ecol Evol 2003, 18:306-314.
  • [101]Myneni R, Hall F, Sellers P, Marshak A: The interpretation of spectral vegetation indexes. IEEE Trans Geosci Rem Sens 1995, 33:481-486.
  • [102]Carlson TN, Ripley DA: On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens Environ 1997, 62:241-252.
  • [103]Purevdorj TS, Tateishi R, Ishiyama T, Honda Y: Relationships between percent vegetation cover and vegetation indices. Int J Remote Sens 1998, 19:3519-3535.
  • [104]Borowik T, Pettorelli N, Sönnichsen L, Jędrzejewska B: Normalized difference vegetation index (NDVI) as a predictor of forage availability for ungulates in forest and field habitats. Eur J Wildl Res 2013, 59:675-682.
  • [105]Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC: Using the satellite-derived normalized difference vegetation index (NDVI) to assess ecological effects of environmental change. Trends Ecol Evol 2005, 20:503-510.
  • [106]Pettorelli N, Ryan S, Mueller T, Bunnefeld N, Jedrzejewska B, Lima M, Kausrud K: The normalized difference vegetation index (NDVI): unforeseen successes in animal ecology. Clim Res 2011, 46:5-27.
  • [107]Neigh CSR, Tucker CJ, Townshend JRG: North American vegetation dynamics observed with multi-resolution satellite data. Remote Sens Environ 2008, 112:1749-1772.
  • [108]Armstrong KN, Kerry LJ: Modelling the prey detection performance of Rhinonicteris aurantia (Chiroptera: Hipposideridae) in different atmospheric conditions discounts the notional role of relative humidity in adaptive evolution. J Theor Biol 2011, 278:44-54.
  • [109]Csorba G, Ujhelyi P, Thomas N: Horseshoe bats of the world: (Chiroptera: Rhinolophidae). Shropshire: Alana Books; 2003.
  • [110]Stilz WP, Schnitzler HU: Estimation of the acoustic range of bat echolocation for extended targets. J Acoust Soc Am 2012, 132:1765.
  • [111]Long GR, Schnitzler HU: Behavioural audiograms from the bat, Rhinolophus ferrumequinum. J Comp Physiol A 1975, 100:211-219.
  • [112]Meyer CF, Kalko EK, Kerth G: Small‒scale fragmentation effects on local genetic diversity in two Phyllostomid bats with different dispersal abilities in Panama. Biotropica 2009, 41:95-102.
  • [113]Petren K, Grant PR, Grant BR, Keller LF: Comparative landscape genetics and the adaptive radiation of Darwin’s finches: the role of peripheral isolation. Mol Ecol 2005, 14:2943-2957.
  • [114]Huson DH, Bryant D: Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 2006, 23:254-267.
  • [115]Cassens I, Van Waerebeek K, Best PB, Crespo EA, Reyes J, Milinkovitch MC: The phylogeography of dusky dolphins (Lagenorhynchus obscurus): a critical examination of network methods and rooting procedures. Mol Ecol 2003, 12:1781-1792.
  • [116]Cheng L, Connor TR, Sirén J, Aanensen DM, Corander J: Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol Biol Evol 2013, 30:1224-1228.
  • [117]Peakall R, Smouse PE: GenAlEx 6.5: genetic analysis in excel: population genetic software for teaching and research—an update. Bioinformatics 2012, 28:2537-2539.
  • [118]Wright S: The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 1965, 19:395-420.
  • [119]Excoffier L, Smouse PE, Quattro JM: Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 1992, 131:479-491.
  • [120]Beerli P: How to use MIGRATE or why are Markov Chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation. Edited by Bertorelle G, Bruford MW, Hauffe HC, Rizzoli A, Vernesi C. Cambridge: Cambridge University Press; 2009:42-79.
  • [121]Hutterer R, Ivanova T, Meyer-Cords C, Rodrigues L: Bat migration in Europe: a review of banding data and literature. Bonn: Federal Agency for Nature Conservation; 2005.
  • [122]Beerli P, Felsenstein J: Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics 1999, 152:763-773.
  • [123]Rudh A, Rogell B, Höglund J: Non‒gradual variation in colour morphs of the strawberry poison frog Dendrobates pumilio: genetic and geographical isolation suggest a role for selection in maintaining polymorphism. Mol Ecol 2007, 16:4284-4294.
  • [124]Mantel N: The detection of disease clustering and a generalized regression approach. Cancer Res 1967, 27:209-220.
  • [125]Smouse PE, Long JC, Sokal RR: Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst Zool 1986, 35:627-632.
  • [126]Slatkin M: Isolation by distance in equilibrium and non-equilibrium populations. Evolution 1993, 47:264-279.
  • [127]Bryant D, Moulton V: Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 2004, 21:255-265.
  • [128]Turmelle AS, Kunz TH, Sorenson MD: A tale of two genomes: contrasting patterns of phylogeographic structure in a widely distributed bat. Mol Ecol 2011, 20:357-375.
  • [129]Toews DP, Brelsford A: The biogeography of mitochondrial and nuclear discordance in animals. Mol Ecol 2012, 21:3907-3930.
  • [130]Mao XG, Zhu GJ, Zhang S, Rossiter SJ: Pleistocene climatic cycling drives intra‒specific diversification in the intermediate horseshoe bat (Rhinolophus affinis) in Southern China. Mol Ecol 2010, 19:2754-2769.
  • [131]Mao X, He G, Hua P, Jones G, Zhang S, Rossiter SJ: Historical introgression and the persistence of ghost alleles in the intermediate horseshoe bat (Rhinolophus affinis). Mol Ecol 2013, 22:1035-1050.
  • [132]Dool SE, Puechmaille SJ, Dietz C, Juste J, Ibáñez C, Hulva P, Roué SG, Petit EJ, Jones G, Russo D, Toffoli R, Viglino A, Martinoli A, Rossiter SJ, Teeling EC: Phylogeography and postglacial recolonisation of Europe by Rhinolophus hipposideros: evidence from multiple genetic markers. Mol Ecol 2013, 22:4055-4070.
  • [133]Chen SF, Jones G, Rossiter SJ: Sex‒biased gene flow and colonization in the Formosan lesser horseshoe bat: inference from nuclear and mitochondrial markers. J Zool 2008, 274:207-215.
  • [134]Stone GN, Nee S, Felsenstein J: Controlling for non-independence in comparative analysis of patterns across populations within species. Phil Trans R Soc B 2011, 366:1410-1424.
  • [135]Felsenstein J: Contrasts for a within-species comparative method. In Modern developments in theoretical population genetics. Edited by Slatkin M, Veuille M. Oxford: Oxford University Press; 2002:118-129.
  • [136]Nosil P: Speciation with gene flow could be common. Mol Ecol 2008, 17:2103-2106.
  • [137]Chattopadhyay B, Garg KM, Ramakrishnan U, Kandula S: Sibling species in South Indian populations of the rufous horse-shoe bat Rhinolophus rouxii. Conserv Genet 2012, 13:1435-1445.
  • [138]Fitzpatrick BM: Underappreciated consequences of phenotypic plasticity for ecological speciation. Int J Ecol 2012, 2012:256017.
  • [139]Genevois F, Bretagnolle V: Male blue petrels reveal body mass when calling. Ethol Ecol Evol 1994, 6:377-383.
  • [140]Castellano S, Cuatt B, Rinella R, Rosso A, Giacoma C: The advertisement call of European treefrogs (Hyla arborea): a multi-level study of variation. Ethology 2002, 108:75-89.
  • [141]Brown WD, Wideman J, Andrade MCB, Mason AC, Gwynne DT: Female choice for an indicator of male size in the song of the black-horned tree cricket, Oecanthus nigricornis (Orthoptera: Gryllidae: Oecanthinae). Evolution 1996, 50:2400-2411.
  • [142]Smith TB, Wayne RK, Girman DJ, Bruford MW: A role for ecotones in generating rainforest biodiversity. Science 1997, 276:1855-1857.
  • [143]Tolley KA, Chase BM, Forest F: Speciation and radiations track climate transitions since the miocene climatic optimum: a case study of southern African chameleons. J Biogeogr 2008, 35:1402-1414.
  • [144]Daniels SR, Gouws G, Crandall KA: Phylogeographic patterning in a freshwater crab species (Decapoda: Potamonautidae: Potamonautes) reveals the signature of historical climatic oscillations. J Biogeogr 2006, 33:1538-1549.
  • [145]du Toit ND, Van Vuuren BJ, Matthee S, Matthee CA: Biome specificity of distinct genetic lineages within the four-striped mouse Rhabdomys pumilio (Rodentia: Muridae) from southern Africa with implications for taxonomy. Mol Phylogenet Evol 2012, 65:75-86.
  • [146]Willows‒Munro S, Matthee CA: Linking lineage diversification to climate and habitat heterogeneity: phylogeography of the southern African shrew Myosorex varius. J Biogeogr 2011, 38:1976-1991.
  • [147]Chase BM, Meadows ME: Late Quaternary dynamics of southern Africa’s winter rainfall zone. Earth-Sci Rev 2007, 84:103-138.
  • [148]Xu Z, Jing W, Keping S, Tinglei J, Yunlei J, Jiang F: Echolocation calls of Rhinolophus ferrumequinum in relation to habitat type and environmental factors. Acta Ecol Sin 2008, 28:5248-5258.
  • [149]Goiti U, Aihartza J, Garin I, Zabala J: Influence of habitat on the foraging behaviour of the Mediterranean horseshoe bat, Rhinolophus euryale. Acta Chiropterol 2003, 5:75-84.
  • [150]Goiti U, Garin I, Almenar D, Salsamendi E, Aihartza J: Foraging by Mediterranean horseshoe bats (Rhinolophus euryale) in relation to prey distribution and edge habitat. J Mammal 2008, 89:493-502.
  • [151]Salsamendi E, Arostegui I, Aihartza J, Almenar D, Goiti U, Garin I: Foraging ecology in Mehely’s horseshoe bats: influence of habitat structure and water availability. Acta Chiropterol 2012, 14:121-132.
  • [152]Lee YF, Kuo YM, Chu WC, Lin YH, Chang HY, Chen WM: Ecomorphology, differentiated habitat use, and nocturnal activities of Rhinolophus and Hipposideros species in East Asian tropical forests. Zoology 2012, 115:22-29.
  • [153]Russo D, Almenar D, Aihartza J, Goiti U, Salsamendi E, Garin I: Habitat selection in sympatric Rhinolophus mehelyi and R. euryale (Mammalia: Chiroptera). J Zool (Lond) 2005, 266:327-332.
  • [154]Surlykke A, Kalko EK: Echolocating bats cry out loud to detect their prey. PLoS One 2008, 3:e2036.
  • [155]Rice AM, Pfennig DW: Does character displacement initiate speciation? Evidence of reduced gene flow between populations experiencing divergent selection. J Evol Biol 2010, 23:854-865.
  • [156]Schuchmann M, Puechmaille SJ, Siemers BM: Horseshoe bats recognise the sex of conspecifics from their echolocation calls. Acta Chiropterol 2012, 14:161-166.
  • [157]Li Y, Liu Z, Shi P, Zhang J: The hearing gene Prestin unites echolocating bats and whales. Curr Biol 2010, 20:R55-R56.
  • [158]Davies KTJ, Cotton JA, Kirwan JD, Teeling EC, Rossiter SJ: Parallel signatures of sequence evolution among hearing genes in echolocating mammals: an emerging model of genetic convergence. Heredity 2011, 108:480-489.
  文献评价指标  
  下载次数:25次 浏览次数:13次