| BMC Research Notes | |
| MetabR: an R script for linear model analysis of quantitative metabolomic data | |
| Brynn H Voy1  Arnold M Saxton1  Shawn R Campagna2  Jessica R Gooding2  Ben Ernest1  | |
| [1] Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA;Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA | |
| 关键词: Mass spectrometry-based metabolomics; Normalization; Statistics; Linear mixed model; User-friendly; R script; | |
| Others : 1165363 DOI : 10.1186/1756-0500-5-596 |
|
| received in 2012-06-19, accepted in 2012-10-08, 发布年份 2012 | |
PDF
|
|
【 摘 要 】
Background
Metabolomics is an emerging high-throughput approach to systems biology, but data analysis tools are lacking compared to other systems level disciplines such as transcriptomics and proteomics. Metabolomic data analysis requires a normalization step to remove systematic effects of confounding variables on metabolite measurements. Current tools may not correctly normalize every metabolite when the relationships between each metabolite quantity and fixed-effect confounding variables are different, or for the effects of random-effect confounding variables. Linear mixed models, an established methodology in the microarray literature, offer a standardized and flexible approach for removing the effects of fixed- and random-effect confounding variables from metabolomic data.
Findings
Here we present a simple menu-driven program, “MetabR”, designed to aid researchers with no programming background in statistical analysis of metabolomic data. Written in the open-source statistical programming language R, MetabR implements linear mixed models to normalize metabolomic data and analysis of variance (ANOVA) to test treatment differences. MetabR exports normalized data, checks statistical model assumptions, identifies differentially abundant metabolites, and produces output files to help with data interpretation. Example data are provided to illustrate normalization for common confounding variables and to demonstrate the utility of the MetabR program.
Conclusions
We developed MetabR as a simple and user-friendly tool for implementing linear mixed model-based normalization and statistical analysis of targeted metabolomic data, which helps to fill a lack of available data analysis tools in this field. The program, user guide, example data, and any future news or updates related to the program may be found athttp://metabr.r-forge.r-project.org/ webcite.
【 授权许可】
2012 Ernest et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150416030216718.pdf | 1044KB | ||
| Figure 6. | 76KB | Image | |
| Figure 5. | 45KB | Image | |
| Figure 4. | 39KB | Image | |
| Figure 3. | 29KB | Image | |
| Figure 2. | 28KB | Image | |
| Figure 1. | 40KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Nicholson JK, Connelly J, Lindon JC, Holmes E: Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 2002, 1:153-161.
- [2]Reaves ML, Rabinowitz JD: Metabolomics in systems microbiology. Curr Opin Biotechnol 2011, 22:17-25.
- [3]Tai E, Tan M, Stevens R, Low Y, Muehlbauer M, Goh D, Ilkayeva O, Wenner B, Bain J, Lee J, Lim S, Khoo C, Shah S, Newgard C: Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia 2010, 53:757-767.
- [4]Kwon YKI, Higgins MB, Rabinowitz JD: Antifolate-induced depletion of intracellular glycine and purines inhibits thymineless death in E. coli. ACS Chem Biol 2010, 5:787-795.
- [5]Xia J, Psychogios N, Young N, Wishart DS: MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res 2009, 37:W652-W660.
- [6]Creek DJ, Jankevics A, Burgess KEV, Breitling R, Barrett MP: IDEOM: an Excel interface for analysis of LC–MS-based metabolomics data. Bioinformatics 2012, 28:1048-1049.
- [7]Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G: XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 2006, 78:779-787.
- [8]Melamud E, Vastag L, Rabinowitz JD: Metabolomic analysis and visualization engine for LC − MS data. Anal Chem 2010, 82:9818-9826.
- [9]Kono N, Arakawa K, Ogawa R, Kido N, Oshita K, Ikegami K, Tamaki S, Tomita M: Pathway Projector: web-based zoomable pathway browser using KEGG Atlas and Google Maps API. PLoS One 2009, 4:e7710.
- [10]Boccard J, Veuthey JL, Rudaz S: Knowledge discovery in metabolomics: an overview of MS data handling. J Sep Sci 2010, 33:290-304.
- [11]Oberg L, Mahoney DH: Linear mixed effects models. In Topics in Biostatistics. Edited by Ambrosius WT. Totowa, NJ: Humana Press; 2007:213-234.
- [12]Wolfinger RD, Gibson G: Assessing gene significance from cDNA microarray expression data via mixed models. J Comput Biol 2001, 8:625-637.
- [13]Yang YH, Dudoit S, Luu P, Speed TP: Normalization for cDNA microarry data. SPIE Proceedings 2001, 4266:141-152.
- [14]Berger MPF, Passos VL, Tan FES, Winkens B: Optimal designs for one- and two-color microarrays using mixed models: a comparative evaluation of their efficiencies. J Comput Biol 2009, 16:67-83.
- [15]Chu T-M, Weir B, Weir , Wolfinger R: A systematic statistical linear modeling approach to oligonucleotide array experiments. Math Biosci 2002, 176:35-51.
- [16]Demirkale CY, Nettleton D, Maiti T: Linear mixed model selection for false discovery rate control in microarray data analysis. Biometrics 2010, 66:621-629.
- [17]Haldermans P, Shkedy Z, Van Sanden S, Burzykowski T, Aerts M: Using linear mixed models for normalization of cDNA microarrays. Stat Appl Genet Mol Biol 2007, 6: .
- [18]Li H, Wood C, Getchell T, Getchell M, Stromberg A: Analysis of oligonucleotide array experiments with repeated measures using mixed models. BMC Bioinforma 2004, 5:209. BioMed Central Full Text
- [19]Wang L, Zhang B, Wolfinger RD, Chen X: An integrated approach for the analysis of biological pathways using mixed models. PLoS Genetics 2008, 4:e1000115.
- [20]Urs S, Smith C, Campbell B, Saxton AM, Taylor J, Zhang B, Snoddy J, Jones Voy B, Moustaid-Moussa N: Gene expression profiling in human preadipocytes and adipocytes by microarray analysis. J Nutr 2004, 134:762-770.
- [21]Wernisch L, Kendall SL, Soneji S, Wietzorrek A, Parish T, Hinds J, Butcher PD, Stoker NG: Analysis of whole-genome microarray replicates using mixed models. Bioinformatics 2003, 19:53-61.
- [22]Smyth GK, Speed T: Normalization of cDNA microarray data. Methods 2003, 31:265-273.
- [23]Du P, Kibbe WA, Lin SM: lumi: a pipeline for processing Illumina microarray. Bioinformatics 2008, 24:1547-1548.
- [24]Verzani J: An introduction to gWidgets. R News 2007, 7:26-33.
- [25]Bates D, Maechler M, Bolker B: lme4: Linear mixed-effects models using S4 classes. 2011. [ http://CRAN.R-project.org/package=lme4 webcite]
- [26]R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2011. [ http:// www.R-project.org/ webcite]
- [27]Noguchi K, Hui WW, Gel YR, Gastwirth JL, Miao W: lawstat: An R package for biostatistics, public policy, and law. 2009. [ http://CRAN.R-project.org/package=lawstat webcite]
- [28]Storey JD: A Direct approach to false discovery rates. Journal of the Royal Statistical Society B 2002, 64:479-498.
- [29]Saxton AM: A macro for converting mean separation output to letter groupings in Proc Mixed. Nashville: Proceedings, 23rd SAS Users Group International: 22-25 March 1998; 1996:1243-1246.
- [30]Collier JJ, Burke SJ, Eisenhauer ME, Lu D, Sapp RC, Frydman CJ, Campagna SR: Pancreatic β-cell death in response to pro-inflammatory cytokines Is distinct from genuine apoptosis. PLoS One 2011, 6:e22485.
- [31]Bajad SU, Lu W, Kimball EH, Yuan J, Peterson C, Rabinowitz JD: Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. Journal of Chromatography A 2006, 1125:76-88.
- [32]Waters CM, Lu W, Rabinowitz JD, Bassler BL: Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT. J Bacteriol 2008, 190:2527-2536.
- [33]Dupont J, Tesseraud S, Derouet M, Collin A, Rideau N, Crochet S, Godet E, Cailleau-Audouin E, Metayer-Coustard S, Duclos MJ, Gespach C, Porter TE, Cogburn LA, Simon J: Insulin immuno-neutralization in chicken: effects on insulin signaling and gene expression in liver and muscle. J Endocrinol 2008, 197:531-542.
- [34]Ji B, Ernest B, Gooding J, Das S, Saxton A, Simon J, Dupont J, Metayer-Coustard S, Campagna S, Voy B: Transcriptomic and metabolomic profiling of chicken adipose tissue in response to insulin neutralization and fasting. BMC Genomics 2012, 13:441. BioMed Central Full Text
- [35]Warnes GR: gplots: Various R programming tools for plotting data. 2012. [ http://CRAN.R-project.org/package=gplots webcite]
PDF