| BMC Genomics | |
| The recent escalation in strength of pyrethroid resistance in Anopheles coluzzi in West Africa is linked to increased expression of multiple gene families | |
| Christopher M Jones1  Hilary Ranson1  Roch K Dabiré2  Sagnon N’Falé3  Kobié H Toé3  | |
| [1] Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso 01 BP 545, Burkina Faso;Centre National de Recherche et de la Formation sur le Paludisme, Ouagadougou 01BP 2208, Burkina Faso | |
| 关键词: Vector control; Transcriptomics; Detoxification enzymes; Pyrethroid resistance; Anopheles coluzzi; | |
| Others : 1135435 DOI : 10.1186/s12864-015-1342-6 |
|
| received in 2014-09-18, accepted in 2015-02-12, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Background
Since 2011, the level of pyrethroid resistance in the major malaria mosquito, Anopheles coluzzi, has increased to such an extent in Burkina Faso that none of the long lasting insecticide treated nets (LLINs) currently in use throughout the country kill the local mosquito vectors. We investigated whether this observed increase was associated with transcriptional changes in field-caught Anopheles coluzzi using two independent whole-genome microarray studies, performed in 2011 and 2012.
Results
Mosquitoes were collected from south-west Burkina Faso in 2011 and 2012 and insecticide exposed or non-exposed insects were compared to laboratory susceptible colonies using whole-genome microarrays. Using a stringent filtering process we identified 136 genes, including the well-studied detoxification enzymes (p450 monoxygenases and esterases) and non-detoxification genes (e.g. cell transporters and cuticular components), associated with pyrethroid resistance, whose basal expression level increased during the timeframe of the study. A subset of these were validated by qPCR using samples from two study sites, collected over 3 years and marked increases in expression were observed each year. We hypothesise that these genes are contributing to this rapidly increasing resistance phenotype in An. coluzzi. A comprehensive analysis of the knockdown resistance (kdr) mutations (L1014S, L1014F and N1575Y) revealed that the majority of the resistance phenotype is not explained by target-site modifications.
Conclusions
Our data indicate that the recent and rapid increase in pyrethroid resistance observed in south-west Burkina Faso is associated with gene expression profiles described here. Over a third of these candidates are also overexpressed in multiple pyrethroid resistant populations of An. coluzzi from neighbouring Côte d’Ivoire. This suite of molecular markers can be used to track the spread of the extreme pyrethroid resistance phenotype that is sweeping through West Africa and to determine the functional basis of this trait.
【 授权许可】
2015 Toé et al.; licensee BioMed Central.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150309031508610.pdf | 1147KB | ||
| Figure 5. | 30KB | Image | |
| Figure 4. | 98KB | Image | |
| Figure 3. | 61KB | Image | |
| Figure 2. | 37KB | Image | |
| Figure 1. | 35KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]WHO Global Malaria Programme: Global plan for insecticide resistance management in malaria vectors (GPIRM). World Health Organisation, Geneva; 2012.
- [2]Chandre F, Darrier F, Manga L, Akogbeto M, Faye O, Mouchet J, et al.: Status of pyrethroid resistance in Anopheles gambiae sensu lato. Bull World Health Organ 1999, 77(3):230-4.
- [3]Dabiré KR, Diabaté A, Namountougou M, Djogbenou L, Wondji C, Chandre F, et al.: Trends in insecticide resistance in natural populations of malaria vectors in Burkina Faso, west Africa: 10 Years’ surveys. In Insecticides – pest engineering. Intech. vol 22 Edited by Perveen F. 2012, 479-502.
- [4]Diabaté A, Baldet T, Chandre F, Akoobeto M, Guiguemde RT, Darriet F, et al.: The role of agricultural use of insecticides in resistance to pyrethroids in Anopheles gambiae s.l. in Burkina Faso. Am J Trop Med Hyg 2002, 67(6):617-22.
- [5]Toé HK, Jones CM, N'Fale S, Ismail HM, Dabire R, Ranson H: Increased pyrethroid resistance in malaria vectors and reduced bed net effectiveness, Burkina Faso. Emerg Infect Dis 2014, 20(10):6.
- [6]Hemingway J, Hawkes NJ, McCarroll L, Ranson H: The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol 2004, 34(7):653-65.
- [7]Donnelly MJ, Corbel V, Weetman D, Wilding CS, Williamson MS, Black WC: Does kdr genotype predict insecticide-resistance phenotype in mosquitoes? Trends Parasitol 2009, 25(5):213-9.
- [8]Lynd A, Weetman D, Barbosa S, Yawson AE, Mitchell S, Pinto J, et al.: Field, genetic, and modeling approaches show strong positive selection acting upon an insecticide resistance mutation in Anopheles gambiae s.s. Mol Biol Evol 2010, 27(5):1117-25.
- [9]David JP, Strode C, Vontas J, Nikou D, Vaughan A, Pignatelli PM, et al.: The Anopheles gambiae detoxification chip: a highly specific microarray to study metabolic-based insecticide resistance in malaria vectors. Proc Natl Acad Sci U S A 2005, 102(11):4080-4.
- [10]Mitchell SN, Stevenson BJ, Muller P, Wilding CS, Egyir-Yawson A, Field SG, et al.: Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana. Proc Natl Acad Sci U S A 2012, 109(16):6147-52.
- [11]Jones CM, Toe HK, Sanou A, Namountougou M, Hughes A, Diabate A, et al.: Additional selection for insecticide resistance in urban malaria vectors: DDT resistance in Anopheles arabiensis from Bobo-Dioulasso. Burkina Faso. PLoS One 2012, 7(9):e45995.
- [12]Muller P, Warr E, Stevenson BJ, Pignatelli PM, Morgan JC, Steven A, et al.: Field-caught permethrin-resistant Anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids. PLoS Genet 2008, 4(11):e1000286.
- [13]Fossog Tene B, Poupardin R, Costantini C, Awono-Ambene P, Wondji CS, Ranson H, et al.: Resistance to DDT in an urban setting: common mechanisms implicated in both M and S forms of Anopheles gambiae in the city of Yaounde Cameroon. PLoS One 2013, 8(4):e61408.
- [14]Stevenson BJ, Bibby J, Pignatelli P, Muangnoicharoen S, O'Neill PM, Lian LY, et al.: Cytochrome P450 6M2 from the malaria vector Anopheles gambiae metabolizes pyrethroids: sequential metabolism of deltamethrin revealed. Insect Biochem Mol Biol 2011, 41(7):492-502.
- [15]Edi CV, Djogbenou L, Jenkins AM, Regna K, Muskavitch MA, Poupardin R, et al.: CYP6 P450 enzymes and ACE-1 duplication produce extreme and multiple insecticide resistance in the malaria mosquito anopheles gambiae. PLoS Genet 2014, 10(3):e1004236.
- [16]Chandor-Proust A, Bibby J, Regent-Kloeckner M, Roux J, Guittard-Crilat E, Poupardin R, et al.: The central role of mosquito cytochrome P450 CYP6Zs in insecticide detoxification revealed by functional expression and structural modelling. Biochem J 2013, 455:75-85.
- [17]Jones CM, Haji KA, Khatib BO, Bagi J, Mcha J, Devine GJ, et al.: The dynamics of pyrethroid resistance in Anopheles arabiensis from Zanzibar and an assessment of the underlying genetic basis. Parasit Vectors 2013, 6(1):343. BioMed Central Full Text
- [18]Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative C-T method. Nat Protoc 2008, 3(6):1101-8.
- [19]Jones CM, Liyanapathirana M, Agossa FR, Weetman D, Ranson H, Donnelly MJ, et al.: Footprints of positive selection associated with a mutation (N1575Y) in the voltage-gated sodium channel of Anopheles gambiae. Proc Natl Acad Sci U S A 2012, 109(17):6614-9.
- [20]Muller P, Chouaibou M, Pignatelli P, Etang J, Walker ED, Donnelly MJ, et al.: Pyrethroid tolerance is associated with elevated expression of antioxidants and agricultural practice in Anopheles arabiensis sampled from an area of cotton fields in Northern Cameroon. Mol Ecol 2008, 17(4):1145-55.
- [21]Feyereisen R: Insect CYP genes and P450 enzymes. In Insect molecular biology and biochemistry. Edited by Lawrence IG. Academic, San Diego; 2012:236-316.
- [22]Qiu Y, Tittiger C, Wicker-Thomas C, Le Goff G, Young S, Wajnberg E, et al.: An insect-specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proc Natl Acad Sci U S A 2012, 109(37):14858-63.
- [23]Jasrapuria S, Specht CA, Kramer KJ, Beeman RW, Muthukrishnan S: Gene families of cuticular proteins analogous to peritrophins (CPAPs) in tribolium castaneum have diverse functions. PloS One 2012, 7(11):e49844.
- [24]Nkya TE, Akhouayri I, Poupardin R, Batengana B, Mosha F, Magesa S, et al.: Insecticide resistance mechanisms associated with different environments in the malaria vector Anopheles gambiae: a case study in Tanzania. Malar J 2014, 13:28. BioMed Central Full Text
- [25]Spring JH, Robichaux SR, Hamlin JA: The role of aquaporins in excretion in insects. J Exp Biol 2009, 212(Pt 3):358-62.
- [26]Yang J, McCart C, Woods DJ, Terhzaz S, Greenwood KG, Ffrench-Constant RH, et al.: A Drosophila systems approach to xenobiotic metabolism. Physiol Genomics 2007, 30(3):223-31.
- [27]Munday JC, Eze AA, Baker N, Glover L, Clucas C, Aguinaga Andres D, et al.: Trypanosoma brucei aquaglyceroporin 2 is a high-affinity transporter for pentamidine and melaminophenyl arsenic drugs and the main genetic determinant of resistance to these drugs. J Antimicrob Chemother 2014, 69(3):651-63.
- [28]Giannoni F, Muller HM, Vizioli J, Catteruccia F, Kafatos FC, Crisanti A: Nuclear factors bind to a conserved DNA element that modulates transcription of Anopheles gambiae trypsin genes. J Biol Chem 2001, 276(1):700-7.
- [29]Gong M, Shen B, Gu Y, Tian H, Ma L, Li X, et al.: Serine proteinase over-expression in relation to deltamethrin resistance in Culex pipiens pallens. Arch Biochem Biophys 2005, 438(1):53-62.
- [30]Kwiatkowska RM, Platt N, Poupardin R, Irving H, Dabire RK, Mitchell S, et al.: Dissecting the mechanisms responsible for the multiple insecticide resistance phenotype in Anopheles gambiae s.s. M form, from Vallée du Kou, Burkina Faso. Gene 2013, 519(1):98-106.
- [31]Mitchell SN, Rigden DJ, Dowd AJ, Lu F, Wilding CS, Weetman D, et al.: Metabolic and target-site mechanisms combine to confer strong DDT resistance in Anopheles gambiae. PloS One 2014, 9(3):e92662.
- [32]Nardini L, Christian RN, Coetzer N, Ranson H, Coetzee M, Koekemoer LL: Detoxification enzymes associated with insecticide resistance in laboratory strains of Anopheles arabiensis of different geographic origin. Parasit Vectors 2012, 5:113. BioMed Central Full Text
- [33]Edi CVA, Koudou BG, Jones CM, Weetman D, Ranson H: Multiple-insecticide resistance in Anopheles gambiae mosquitoes, Southern Cote d'Ivoire. Emerg Infect Dis 2012, 18(9):1508-11.
- [34]Ranson H: Facing the resistance crisis in malaria control by developing and evaluating 'Resistance-Breaking' products. Outlooks Pest Manage 2014, 25(1):33-5.
- [35]Livak K: Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis. Genetics 1984, 107(4):611-34.
- [36]Santolamazza F, Mancini E, Simard F, Qi Y, Tu Z, della Torre A: Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar J 2008, 7:163. BioMed Central Full Text
- [37]Bass C, Nikou D, Donnelly MJ, Williamson MS, Ranson H, Ball A, et al.: Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods. Malar J 2007, 6:111. BioMed Central Full Text
- [38]Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21:263-5.
- [39]Coetzee M, Hunt R, Wilkerson R, Torre AD, Coulibaly M, Besansky N: Anopheles coluzzii and Anopheles amharicus, new members of the Anopheles gambiae complex. Zootaxa 2013, 3619(3):246-74.
- [40]Churchill G: Fundamentals of experimental design for cDNA microarrays. Nat Genet 2002, 32:490-5.
- [41]Cui X, Churchill G: Statistical tests for differential expression in cDNA microarray experiments. Genome Biol 2003, 4(4):210. BioMed Central Full Text
- [42]Smyth G: Limma: Linear models for microarray data. In Bioinformatics and computational biology solutions using R and BIOCONDUCTOR. Edited by Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W. Springer, New York; 2005:397-420.
- [43]Wu P, Kerr M, Cui X, Churchill G: MAANOVA: a software package for the analysis of spotted cDNA microarray experiments. In The analysis of gene expression data. Edited by Parmigiani G, Garrett E, Irizarry R, Zeger S. London, Springer; 2003:313-41.
PDF