期刊论文详细信息
BMC Gastroenterology
Associations of coffee consumption with markers of liver injury in the insulin resistance atherosclerosis study
A. J. Hanley8  L. E. Wagenknecht5  J. K. Stiles4  S. J. Hamren4  S. M. Watkins2  S. M. Haffner7  C. Lorenzo1  A. D. Liese6  J. C. Dickson3 
[1] Division of Clinical Epidemiology, University of Texas Health Sciences Center at San Antonio, San Antonio, TX, USA;Lipomics Technologies, West Sacramento, CA, USA;Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada;Singulex, Inc., Alameda, CA, USA;Division of Public Health Sciences, School of Medicine, Wake Forest University, Winston-Salem, NC, USA;Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA;University of Texas Health Science Center, San Antonio, TX, USA;Departments of Medicine and Dalla Lana School of Public Health, University of Toronto and Leadership Sinai Centre for Diabetes, Mt Sinai Hospital, University of Toronto, 150 College Street, Room 341, Toronto M5S 3E2, ON, Canada
关键词: Insulin resistance atherosclerosis study;    Liver enzymes;    Fetuin-A;    NAFLD liver fat score;    AST;    ALT;    Type 2 diabetes;    Decaffeinated;    Caffeine;    Coffee;   
Others  :  1224269
DOI  :  10.1186/s12876-015-0321-3
 received in 2015-01-09, accepted in 2015-07-16,  发布年份 2015
PDF
【 摘 要 】

Background

Coffee consumption has been associated with reduced risk of developing type 2 diabetes mellitus (T2DM) however, the mechanism for this association has yet to be elucidated. Non-alcoholic fatty liver disease (NAFLD) characterizes and predicts T2DM yet the relationship of coffee with this disorder remains unclear. Our aim was to investigate the associations of coffee with markers of liver injury in 1005 multi-ethnic, non-diabetic adults in the Insulin Resistance Atherosclerosis Study.

Methods

Dietary intake was assessed using a validated 114-item food frequency questionnaire. Alanine aminotransferase (ALT), aspartate aminotransferase (AST) and fetuin-A were determined in fasting blood samples and the validated NAFLD liver fat score was calculated. Multivariate linear regression assessed the contribution of coffee to variation in markers of liver injury.

Results

Caffeinated coffee showed significant inverse associations with ALT (β = −0.08, p = 0.0111), AST (β = −0.05, p = 0.0155) and NAFLD liver fat score (β = −0.05, p = 0.0293) but not with fetuin-A (β = 0.04, p = 0.17). When the highest alcohol consumers were excluded, these associations remained (ALT β = −0.11, p = 0.0037; AST β = −0.05, p = 0.0330; NAFLD liver fat score β = −0.06, p = 0.0298). With additional adjustment for insulin sensitivity, the relationship with ALT remained significant (ALT β = −0.08, p = 0.0400; AST β = −0.03, p = 0.20; NAFLD liver fat score β = −0.03, p = 0.27). There were no significant associations of decaffeinated coffee with liver markers.

Conclusions

These analyses indicate a beneficial impact of caffeinated coffee on liver morphology and/or function, and suggest that this relationship may mediate the well-established inverse association of coffee with risk of T2DM.

【 授权许可】

   
2015 Dickson et al.

【 预 览 】
附件列表
Files Size Format View
20150909051337234.pdf 400KB PDF download
【 参考文献 】
  • [1]Huxley R, Lee CM, Barzi F, Timmermeister L, Czernichow S, Perkovic V, et al.: Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus: a systematic review with meta-analysis. Arch Intern Med 2009, 169(22):2053-2063.
  • [2]Jiang X, Zhang D, Jiang W: Coffee and caffeine intake and incidence of type 2 diabetes mellitus: a meta-analysis of prospective studies. Eur J Nutr 2014, 53(1):25-38.
  • [3]Fraser A, Harris R, Sattar N, Ebrahim S, Davey Smith G, Lawlor DA: Alanine aminotransferase, gamma-glutamyltransferase, and incident diabetes: the British Women’s Heart and Health Study and meta-analysis. Diabetes Care 2009, 32(4):741-750.
  • [4]Shibata M, Kihara Y, Taguchi M, Tashiro M, Otsuki M: Nonalcoholic fatty liver disease is a risk factor for type 2 diabetes in middle-aged Japanese men. Diabetes Care 2007, 30(11):2940-2944.
  • [5]Kim CH, Park JY, Lee KU, Kim JH, Kim HK: Fatty liver is an independent risk factor for the development of Type 2 diabetes in Korean adults. Diabet Med 2008, 25(4):476-481.
  • [6]Okamoto M, Takeda Y, Yoda Y, Kobayashi K, Fujino MA, Yamagata Z: The association of fatty liver and diabetes risk. J Epidemiol 2003, 13(1):15-21.
  • [7]Saab S, Mallam D: Cox GA,2nd, Tong MJ. Impact of coffee on liver diseases: a systematic review. Liver Int 2014, 34(4):495-504.
  • [8]Masterton GS, Hayes PC: Coffee and the liver: a potential treatment for liver disease? Eur J Gastroenterol Hepatol 2010, 22(11):1277-1283.
  • [9]Muriel P, Arauz J: Coffee and liver diseases. Fitoterapia 2010, 81(5):297-305.
  • [10]Klatsky AL, Morton C, Udaltsova N, Friedman GD: Coffee, cirrhosis, and transaminase enzymes. Arch Intern Med 2006, 166(11):1190-1195.
  • [11]Ruhl CE, Everhart JE: Coffee and caffeine consumption reduce the risk of elevated serum alanine aminotransferase activity in the United States. Gastroenterology 2005, 128(1):24-32.
  • [12]Bravi F, Bosetti C, Tavani A, Gallus S, La Vecchia C: Coffee reduces risk for hepatocellular carcinoma: an updated meta-analysis. Clin Gastroenterol Hepatol 2013, 11(11):1413-1421.e1.
  • [13]Kono S, Shinchi K, Imanishi K, Todoroki I, Hatsuse K: Coffee and serum gamma-glutamyltransferase: a study of self-defense officials in Japan. Am J Epidemiol 1994, 139(7):723-727.
  • [14]Honjo S, Kono S, Coleman MP, Shinchi K, Sakurai Y, Todoroki I, et al.: Coffee consumption and serum aminotransferases in middle-aged Japanese men. J Clin Epidemiol 2001, 54(8):823-829.
  • [15]Honjo S, Kono S, Coleman MP, Shinchi K, Sakurai Y, Todoroki I, et al.: Coffee drinking and serum gamma-glutamyltransferase: an extended study of Self-Defense Officials of Japan. Ann Epidemiol 1999, 9(5):325-331.
  • [16]Nakanishi N, Nakamura K, Nakajima K, Suzuki K, Tatara K: Coffee consumption and decreased serum gamma-glutamyltransferase: a study of middle-aged Japanese men. Eur J Epidemiol 2000, 16(5):419-423.
  • [17]Tanaka K, Tokunaga S, Kono S, Tokudome S, Akamatsu T, Moriyama T, et al.: Coffee consumption and decreased serum gamma-glutamyltransferase and aminotransferase activities among male alcohol drinkers. Int J Epidemiol 1998, 27(3):438-443.
  • [18]Yamashita K, Yatsuya H, Muramatsu T, Toyoshima H, Murohara T, Tamakoshi K: Association of coffee consumption with serum adiponectin, leptin, inflammation and metabolic markers in Japanese workers: a cross-sectional study. Nutrition and Diabetes 2012, 2(4):e33.
  • [19]Xiao Q, Sinha R, Graubard BI, Freedman ND: Inverse associations of total and decaffeinated coffee with liver enzyme levels in National Health and Nutrition Examination Survey 1999–2010. Hepatology 2014, 60:2091-8.
  • [20]Wedick NM, Brennan AM, Sun Q, Hu FB, Mantzoros CS, van Dam RM: Effects of caffeinated and decaffeinated coffee on biological risk factors for type 2 diabetes: a randomized controlled trial. Nutr J 2011, 10:93. BioMed Central Full Text
  • [21]Ix JH, Biggs ML, Mukamal KJ, Kizer JR, Zieman SJ, Siscovick DS, et al.: Association of fetuin-a with incident diabetes mellitus in community-living older adults: the cardiovascular health study. Circulation 2012, 125(19):2316-2322.
  • [22]Mori K, Emoto M, Yokoyama H, Araki T, Teramura M, Koyama H, et al.: Association of serum fetuin-A with insulin resistance in type 2 diabetic and nondiabetic subjects. Diabetes Care 2006, 29(2):468.
  • [23]Jacobs S, Kroger J, Floegel A, Boeing H, Drogan D, Pischon T, et al.: Evaluation of various biomarkers as potential mediators of the association between coffee consumption and incident type 2 diabetes in the EPIC-Potsdam Study. Am J Clin Nutr 2014, 100(3):891-900.
  • [24]Kotronen A, Peltonen M, Hakkarainen A, Sevastianova K, Bergholm R, Johansson LM, et al.: Prediction of non-alcoholic fatty liver disease and liver fat using metabolic and genetic factors. Gastroenterology 2009, 137(3):865-872.
  • [25]Cheung CL, Lam K, Wong I, Cheung B: Non-invasive score identifies ultrasonography-diagnosed non-alcoholic fatty liver disease and predicts mortality in the USA. BMC Med 2014, 12(1):154. BioMed Central Full Text
  • [26]Wagenknecht LE, Mayer EJ, Rewers M, Haffner S, Selby J, Borok GM, et al.: The insulin resistance atherosclerosis study (IRAS) objectives, design, and recruitment results. Ann Epidemiol 1995, 5(6):464-472.
  • [27]World Health Organization: Definition, Diagnosis and Classification of Diabetes Mellitus and its Complications. Part 1: Diagnosis and Classification of Diabetes Mellitus. 1999.
  • [28]Pacini G, Bergman RN: MINMOD: a computer program to calculate insulin sensitivity and pancreatic responsivity from the frequently sampled intravenous glucose tolerance test. Comput Methods Programs Biomed 1986, 23(2):113-122.
  • [29]Saad MF, Anderson RL, Laws A, Watanabe RM, Kades WW, Chen YD, et al.: A comparison between the minimal model and the glucose clamp in the assessment of insulin sensitivity across the spectrum of glucose tolerance. Insulin Resistance Atherosclerosis Study. Diabetes 1994, 43(9):1114-1121.
  • [30]Steil GM, Volund A, Kahn SE, Bergman RN: Reduced sample number for calculation of insulin sensitivity and glucose effectiveness from the minimal model. Suitability for use in population studies. Diabetes 1993, 42(2):250-256.
  • [31]Mayer-Davis EJ, D’Agostino R Jr, Karter AJ, Haffner SM, Rewers MJ, Saad M, et al.: Intensity and amount of physical activity in relation to insulin sensitivity: the Insulin Resistance Atherosclerosis Study. JAMA 1998, 279(9):669-674.
  • [32]Mayer-Davis EJ, Vitolins MZ, Carmichael SL, Hemphill S, Tsaroucha G, Rushing J, et al.: Validity and reproducibility of a food frequency interview in a Multi-Cultural Epidemiology Study. Ann Epidemiol 1999, 9(5):314-324.
  • [33]Salvini S, Hunter DJ, Sampson L, Stampfer MJ, Colditz GA, Rosner B, et al.: Food-based validation of a dietary questionnaire: the effects of week-to-week variation in food consumption. Int J Epidemiol 1989, 18(4):858-867.
  • [34]Feskanich D, Rimm EB, Giovannucci EL, Colditz GA, Stampfer MJ, Litin LB, et al.: Reproducibility and validity of food intake measurements from a semiquantitative food frequency questionnaire. J Am Diet Assoc 1993, 93(7):790-796.
  • [35]Loopstra-Masters RC, Liese AD, Haffner SM, Wagenknecht LE, Hanley AJ: Associations between the intake of caffeinated and decaffeinated coffee and measures of insulin sensitivity and beta cell function. Diabetologia 2011, 54(2):320-328.
  • [36]Liese AD, Schulz M, Moore CG, Mayer-Davis EJ: Dietary patterns, insulin sensitivity and adiposity in the multi-ethnic Insulin Resistance Atherosclerosis Study population. Br J Nutr 2004, 92(6):973-984.
  • [37]Hanley AJ, Williams K, Festa A, Wagenknecht LE, D’Agostino RB Jr, Kempf J, et al.: Elevations in markers of liver injury and risk of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes 2004, 53(10):2623-2632.
  • [38]Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al.: Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120(16):1640-1645.
  • [39]Sattar N, Scherbakova O, Ford I, O’Reilly DS, Stanley A, Forrest E, et al.: Elevated alanine aminotransferase predicts new-onset type 2 diabetes independently of classical risk factors, metabolic syndrome, and C-reactive protein in the west of Scotland coronary prevention study. Diabetes 2004, 53(11):2855-2860.
  • [40]Birerdinc A, Stepanova M, Pawloski L, Younossi ZM: Caffeine is protective in patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther 2012, 35(1):76-82.
  • [41]Catalano D, Martines GF, Tonzuso A, Pirri C, Trovato FM, Trovato GM: Protective role of coffee in non-alcoholic fatty liver disease (NAFLD). Dig Dis Sci 2010, 55(11):3200-3206.
  • [42]Gutierrez-Grobe Y, Chavez-Tapia N, Sanchez-Valle V, Gavilanes-Espinar JG, Ponciano-Rodriguez G, Uribe M, et al.: High coffee intake is associated with lower grade nonalcoholic fatty liver disease: the role of peripheral antioxidant activity. Ann Hepatol 2012, 11(3):350-355.
  • [43]Anty R, Marjoux S, Iannelli A, Patouraux S, Schneck AS, Bonnafous S, et al.: Regular coffee but not espresso drinking is protective against fibrosis in a cohort mainly composed of morbidly obese European women with NAFLD undergoing bariatric surgery. J Hepatol 2012, 57(5):1090-1096.
  • [44]Molloy JW, Calcagno CJ, Williams CD, Jones FJ, Torres DM, Harrison SA: Association of coffee and caffeine consumption with fatty liver disease, nonalcoholic steatohepatitis, and degree of hepatic fibrosis. Hepatology 2012, 55(2):429-436.
  • [45]Sakaguchi S, Takahashi S, Sasaki T, Kumagai T, Nagata K: Progression of alcoholic and non-alcoholic steatohepatitis: common metabolic aspects of innate immune system and oxidative stress. Drug Metab Pharmacokinet 2011, 26(1):30-46.
  • [46]Yki-Jarvinen H: Liver fat in the pathogenesis of insulin resistance and type 2 diabetes. Dig Dis 2010, 28(1):203-209.
  • [47]Westerbacka J, Corner A, Tiikkainen M, Tamminen M, Vehkavaara S, Hakkinen AM, et al.: Women and men have similar amounts of liver and intra-abdominal fat, despite more subcutaneous fat in women: implications for sex differences in markers of cardiovascular risk. Diabetologia 2004, 47(8):1360-1369.
  文献评价指标  
  下载次数:19次 浏览次数:17次