期刊论文详细信息
BMC Systems Biology
Integration of heterogeneous molecular networks to unravel gene-regulation in Mycobacterium tuberculosis
María Suárez-Diez2  Vitor AP Martins dos Santos1  Peter J Schaap2  Jesse CJ van Dam2 
[1] LifeGlimmer GmbH, Markelstrasse 38, Berlin, Germany;Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands
关键词: DNA repair;    Zinc uptake regulation;    devR;    Dormancy;    Mycobacterium tuberculosis;    Reverse engineering;    Regulatory networks;    Data integration;    Meta-study;   
Others  :  1092039
DOI  :  10.1186/s12918-014-0111-5
 received in 2014-07-15, accepted in 2014-09-05,  发布年份 2014
PDF
【 摘 要 】

Background

Different methods have been developed to infer regulatory networks from heterogeneous omics datasets and to construct co-expression networks. Each algorithm produces different networks and efforts have been devoted to automatically integrate them into consensus sets. However each separate set has an intrinsic value that is diluted and partly lost when building a consensus network. Here we present a methodology to generate co-expression networks and, instead of a consensus network, we propose an integration framework where the different networks are kept and analysed with additional tools to efficiently combine the information extracted from each network.

Results

We developed a workflow to efficiently analyse information generated by different inference and prediction methods. Our methodology relies on providing the user the means to simultaneously visualise and analyse the coexisting networks generated by different algorithms, heterogeneous datasets, and a suite of analysis tools. As a show case, we have analysed the gene co-expression networks of Mycobacterium tuberculosis generated using over 600 expression experiments. Regarding DNA damage repair, we identified SigC as a key control element, 12 new targets for LexA, an updated LexA binding motif, and a potential mismatch repair system. We expanded the DevR regulon with 27 genes while identifying 9 targets wrongly assigned to this regulon. We discovered 10 new genes linked to zinc uptake and a new regulatory mechanism for ZuR. The use of co-expression networks to perform system level analysis allows the development of custom made methodologies. As show cases we implemented a pipeline to integrate ChIP-seq data and another method to uncover multiple regulatory layers.

Conclusions

Our workflow is based on representing the multiple types of information as network representations and presenting these networks in a synchronous framework that allows their simultaneous visualization while keeping specific associations from the different networks. By simultaneously exploring these networks and metadata, we gained insights into regulatory mechanisms in M. tuberculosis that could not be obtained through the separate analysis of each data type.

【 授权许可】

   
2014 van Dam et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128175956463.pdf 2349KB PDF download
Figure 8. 62KB Image download
Figure 7. 69KB Image download
Figure 6. 105KB Image download
Figure 5. 38KB Image download
Figure 4. 12KB Image download
Figure 3. 84KB Image download
Figure 2. 54KB Image download
Figure 1. 34KB Image download
Figure 8. 62KB Image download
Figure 7. 69KB Image download
Figure 6. 105KB Image download
Figure 5. 38KB Image download
Figure 4. 12KB Image download
Figure 3. 84KB Image download
Figure 2. 54KB Image download
Figure 1. 34KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Veiga DFT, Dutta B, Balázsi G: Network inference and network response identification: moving genome-scale data to the next level of biological discovery. Mol Biosyst 2010, 6:469-480.
  • [2]De Smet R, Marchal K: Advantages and limitations of current network inference methods. Nat Rev Micro 2010, 8:717-729.
  • [3]Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D: How to infer gene networks from expression profiles. Mol Syst Biol 2007, 3:78.
  • [4]Bonneau R, Reiss DJ, Shannon P, Facciotti M, Hood L, Baliga NS, Thorsson V: The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol 2006, 7:R36.
  • [5]Cantone I, Marucci L, Iorio F, Ricci MA, Belcastro V, Bansal M, Santini S, di Bernardo M, di Bernardo D, Cosma MP: A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell 2009, 137:172-181.
  • [6][http://www.liebertonline.com/doi/abs/10.1089%2F106652700750050961] webcite Using Bayesian Networks to Analyze Expression Data. []
  • [7]Yu J, Smith VA, Wang PP, Hartemink AJ, Jarvis ED: Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 2004, 20:3594-3603.
  • [8]Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, Kasif S, Collins JJ, Gardner TS: Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles. PLoS Biol 2007, 5:e8.
  • [9]Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A: Reverse engineering of regulatory networks in human B cells. Nat Genet 2005, 37:382-390.
  • [10]Reshef DN, Reshef YA, Finucane HK, Grossman SR, McVean G, Turnbaugh PJ, Lander ES, Mitzenmacher M, Sabeti PC: Detecting Novel Associations in Large Data Sets. Science 2011, 334:1518-1524.
  • [11]Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P: Inferring regulatory networks from expression data using tree-based methods. PLoS One 2010, 5:5.
  • [12]Sławek J, Arodź T: ENNET: inferring large gene regulatory networks from expression data using gradient boosting. BMC Syst Biol 2013, 7:106.
  • [13]Altay G, Emmert-Streib F: Inferring the conservative causal core of gene regulatory networks. BMC Syst Biol 2010, 4:132.
  • [14]Stolovitzky G, Prill RJ, Califano A: Lessons from the DREAM2 Challenges. Ann N Y Acad Sci 2009, 1158:159-195.
  • [15]Marbach D, Costello JC, Küffner R, Vega NM, Prill RJ, Camacho DM, Allison KR, Kellis M, Collins JJ, Stolovitzky G: Wisdom of crowds for robust gene network inference. Nat Meth 2012, 9:796-804.
  • [16]Zhang B, Horvath S: A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 2005, 4:Article17.
  • [17]Zhang B, Tian Y, Jin L, Li H, Shih I-M, Madhavan S, Clarke R, Hoffman EP, Xuan J, Hilakivi-Clarke L, Wang Y: DDN: a caBIG® analytical tool for differential network analysis. Bioinformatics 2011, 27:1036-1038.
  • [18]Ideker T, Krogan NJ: Differential network biology. Mol Syst Biol 2012, 8:565.
  • [19]Gill R, Datta S, Datta S: A statistical framework for differential network analysis from microarray data. BMC Bioinformatics 2010, 11:95.
  • [20]Altay G, Asim M, Markowetz F, Neal DE: Differential C3NET reveals disease networks of direct physical interactions. BMC Bioinformatics 2011, 12:296.
  • [21]Madeira SC, Oliveira AL: Biclustering Algorithms for Biological Data Analysis: A Survey. IEEE/ACM Trans Comput Biol Bioinformatics 2004, 1:24-45.
  • [22]Reiss D, Baliga N, Bonneau R: Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks. BMC Bioinformatics 2006, 7:280.
  • [23]Ma W, Wong WH: Chapter Three - The Analysis of ChIP-Seq Data. In Synthetic Biology, Part A Series. Methods in Enzymology, Volume 497. Edited by Voigt C. Academic Press; 2011:51–73.
  • [24]Reddy TBK, Riley R, Wymore F, Montgomery P, DeCaprio D, Engels R, Gellesch M, Hubble J, Jen D, Jin H, Koehrsen M, Larson L, Mao M, Nitzberg M, Sisk P, Stolte C, Weiner B, White J, Zachariah ZK, Sherlock G, Galagan JE, Ball CA, Schoolnik GK: TB database: an integrated platform for tuberculosis research. Nucleic Acids Res 2009, 37:D499-D508.
  • [25]Galagan JE, Minch K, Peterson M, Lyubetskaya A, Azizi E, Sweet L, Gomes A, Rustad T, Dolganov G, Glotova I, Abeel T, Mahwinney C, Kennedy AD, Allard R, Brabant W, Krueger A, Jaini S, Honda B, Yu W-H, Hickey MJ, Zucker J, Garay C, Weiner B, Sisk P, Stolte C, Winkler JK, Van de Peer Y, Iazzetti P, Camacho D, Dreyfuss J, et al.: The Mycobacterium tuberculosis regulatory network and hypoxia. Nature 2013, 499:178-183.
  • [26]Emmert-Streib F: Influence of the experimental design of gene expression studies on the inference of gene regulatory networks: environmental factors. Peer J 2013, 1:e10.
  • [27]Vallenet D, Belda E, Calteau A, Cruveiller S, Engelen S, Lajus A, Le Fevre F, Longin C, Mornico D, Roche D, Rouy Z, Salvignol G, Scarpelli C, Thil Smith AA, Weiman M, Medigue C: MicroScope–an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Res 2012, 41:D636-D647.
  • [28]Stewart AC, Osborne B, Read TD: DIYA: a bacterial annotation pipeline for any genomics lab. Bioinformatics 2009, 25:962-963.
  • [29]Domselaar GHV, Stothard P, Shrivastava S, Cruz JA, Guo A, Dong X, Lu P, Szafron D, Greiner R, Wishart DS: BASys: a web server for automated bacterial genome annotation. Nucl Acids Res 2005, 33:W455-W459.
  • [30]Sanz J, Navarro J, Arbués A, Martín C, Marijuán PC, Moreno Y: The Transcriptional Regulatory Network of Mycobacterium tuberculosis. PLoS One 2011, 6:e22178.
  • [31]Sachdeva P, Misra R, Tyagi AK, Singh Y: The sigma factors of Mycobacterium tuberculosis: regulation of the regulators. FEBS J 2010, 277:605-626.
  • [32]Balázsi G, Heath AP, Shi L, Gennaro ML: The temporal response of the Mycobacterium tuberculosis gene regulatory network during growth arrest. Mol Syst Biol 2008, 4:225.
  • [33]Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ, Von Mering C: The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 2011, 39:D561-D568.
  • [34]Caspi R, Altman T, Dreher K, Fulcher CA, Subhraveti P, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Pujar A, Shearer AG, Travers M, Weerasinghe D, Zhang P, Karp PD: The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 2011, 40:D742-D753.
  • [35]Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M: KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 2012, 40:D109-D114.
  • [36]Lew JM, Kapopoulou A, Jones LM, Cole ST: TubercuList – 10 years after. Tuberculosis 2011, 91:1-7.
  • [37]Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Holko M, Ayanbule O, Yefanov A, Soboleva A: NCBI GEO: archive for functional genomics data sets–10 years on. Nucleic Acids Res 2010, 39:D1005-D1010.
  • [38]Boshoff HIM, Myers TG, Copp BR, McNeil MR, Wilson MA, Barry CE: The Transcriptional Responses of Mycobacterium tuberculosis to Inhibitors of Metabolism. J Biol Chem 2004, 279:40174-40184.
  • [39]Karakousis PC, Williams EP, Bishai WR: Altered expression of isoniazid-regulated genes in drug-treated dormant Mycobacterium tuberculosis. J Antimicrob Chemother 2008, 61:323-331.
  • [40]Deb C, Lee C-M, Dubey VS, Daniel J, Abomoelak B, Sirakova TD, Pawar S, Rogers L, Kolattukudy PE: A Novel In Vitro Multiple-Stress Dormancy Model for Mycobacterium tuberculosis Generates a Lipid-Loaded, Drug-Tolerant, Dormant Pathogen. PLoS One 2009, 4:e6077.
  • [41]Honaker RW, Leistikow RL, Bartek IL, Voskuil MI: Unique Roles of DosT and DosS in DosR Regulon Induction and Mycobacterium Tuberculosis Dormancy. Infect Immun 2009, 77:3258-3263.
  • [42]Smyth G: Limma: linear models for microarray data. In Bioinformatics and Computational Biology Solutions using R and Bioconductor. Edited by Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W. Springer, New York; 2005:397-420.
  • [43]Hastie T, Tibshiran R, Narasimhan B, Chu G: Impute: Imputation for microarray data. 2010.
  • [44]Bowers PM, Pellegrini M, Thompson MJ, Fierro J, Yeates TO, Eisenberg D: Prolinks: a database of protein functional linkages derived from coevolution. Genome Biol 2004, 5:R35.
  • [45]Huttenhower C, Schroeder M, Chikina MD, Troyanskaya OG: The Sleipnir library for computational functional genomics. Bioinformatics 2008, 24:1559-1561.
  • [46]Thomas-Chollier M, Sand O, Turatsinze J-V, Janky R, Defrance M, Vervisch E, Brohee S, Van Helden J: RSAT: regulatory sequence analysis tools. Nucleic Acids Res 2008, 36:W119-W127.
  • [47]Roback P, Beard J, Baumann D, Gille C, Henry K, Krohn S, Wiste H, Voskuil MI, Rainville C, Rutherford R: A predicted operon map for Mycobacterium tuberculosis. Nucleic Acids Res 2007, 35:5085-5095.
  • [48]Meyer PE, Lafitte F, Bontempi G: minet: A R/Bioconductor Package for Inferring Large Transcriptional Networks Using Mutual Information. BMC Bioinformatics 2008, 9:461.
  • [49]Jang IS, Margolin A, Califano A: hARACNe: Improving the Accuracy of Regulatory Model Reverse Engineering via Higher-order Data Processing Inequality Tests.Interface Focus 2013, 3(4). doi:10.1098/rsfs.2013.0011.
  • [50]Dijkstra EW: A note on two problems in connexion with graphs. Numerische Mathematik 1959, 1:269-271.
  • [51]Smoot ME, Ono K, Ruscheinski J, Wang P-L, Ideker T: Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 2011, 27:431-432.
  • [52]Belcastro V, Siciliano V, Gregoretti F, Mithbaokar P, Dharmalingam G, Berlingieri S, Iorio F, Oliva G, Polishchuck R, Brunetti-Pierri N, di Bernardo D: Transcriptional gene network inference from a massive dataset elucidates transcriptome organization and gene function. Nucl Acids Res 2011, 39:8677-8688.
  • [53]Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schäffer AA: Database indexing for production MegaBLAST searches. Bioinformatics 2008, 24:1757-1764.
  • [54]Bailey TL, Elkan C: Fitting a mixture model by expectation maximization to discover motifs in biopolymers. 1994.
  • [55]Grant CE, Bailey TL, Noble WS: FIMO: scanning for occurrences of a given motif. Bioinformatics 2011, 27:1017-1018.
  • [56]Horan K, Jang C, Bailey-Serres J, Mittler R, Shelton C, Harper JF, Zhu J-K, Cushman JC, Gollery M, Girke T: Annotating Genes of Known and Unknown Function by Large-Scale Coexpression Analysis. Plant Physiol 2008, 147:41-57.
  • [57]Dimmer EC, Huntley RP, Alam-Faruque Y, Sawford T, O’Donovan C, Martin MJ, Bely B, Browne P, Mun Chan W, Eberhardt R, Gardner M, Laiho K, Legge D, Magrane M, Pichler K, Poggioli D, Sehra H, Auchincloss A, Axelsen K, Blatter M-C, Boutet E, Braconi-Quintaje S, Breuza L, Bridge A, Coudert E, Estreicher A, Famiglietti L, Ferro-Rojas S, Feuermann M, Gos A, et al.: The UniProt-GO Annotation database in 2011. Nucleic Acids Res 2012, 40:D565-D570.
  • [58]Doerks T, Van Noort V, Minguez P, Bork P: Annotation of the m. tuberculosis hypothetical orfeome: adding functional information to more than half of the uncharacterized proteins. PLoS One 2012, 7:e34302.
  • [59]Chen H, Boutros PC: VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 2011, 12:35.
  • [60]Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási A-L: Hierarchical Organization of Modularity in Metabolic Networks. Science 2002, 297:1551-1555.
  • [61]Yip AM, Horvath S: Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinformatics 2007, 8:22.
  • [62]Langfelder P, Horvath S: WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008, 9:559.
  • [63]Daub CO, Steuer R, Selbig J, Kloska S: Estimating mutual information using B-spline functions – an improved similarity measure for analysing gene expression data. BMC Bioinformatics 2004, 5:118.
  • [64]Gamulin V, Cetkovic H, Ahel I: Identification of a promoter motif regulating the major DNA damage response mechanism of Mycobacterium tuberculosis. FEMS Microbiol Lett 2004, 238:57-63.
  • [65]Davis EO, Dullaghan EM, Rand L: Definition of the Mycobacterial SOS Box and Use To Identify LexA-Regulated Genes in Mycobacterium tuberculosis. J Bacteriol 2002, 184:3287-3295.
  • [66]Butala M, Žgur-Bertok D, Busby SJW: The bacterial LexA transcriptional repressor. Cell Mol Life Sci 2008, 66:82-93.
  • [67]Smollett KL, Smith KM, Kahramanoglou C, Arnvig KB, Buxton RS, Davis EO: Global Analysis of the Regulon of the Transcriptional Repressor LexA, a Key Component of SOS Response in Mycobacterium tuberculosis. J Biol Chem 2012, 287:22004-22014.
  • [68]Raghunand TR, Bishai WR: Mycobacterium smegmatis whmD and its homologue Mycobacterium tuberculosis whiB2 are functionally equivalent. Microbiology 2006, 152:2735-2747.
  • [69]Mowa MB, Warner DF, Kaplan G, Kana BD, Mizrahi V: Function and Regulation of Class I Ribonucleotide Reductase-Encoding Genes in Mycobacteria. J Bacteriol 2009, 191:985-995.
  • [70]Chauhan A, Lofton H, Maloney E, Moore J, Fol M, Madiraju MVVS, Rajagopalan M: Interference of Mycobacterium tuberculosis cell division by Rv2719c, a cell wall hydrolase. Mol Microbiol 2006, 62:132-147.
  • [71]Marti TM, Kunz C, Fleck O: DNA mismatch repair and mutation avoidance pathways. J Cell Physiol 2002, 191:28-41.
  • [72]Warner DF, Ndwandwe DE, Abrahams GL, Kana BD, Machowski EE, Venclovas C, Mizrahi V: Essential roles for imuA'- and imuB-encoded accessory factors in DnaE2-dependent mutagenesis in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2010, 107:13093-13098.
  • [73]Dos Vultos T, Mestre O, Tonjum T, Gicquel B: DNA repair in Mycobacterium tuberculosis revisited. FEMS Microbiol Rev 2009, 33:471-487.
  • [74]Wang Y, Huang Y, Xue C, He Y, He Z-G: ClpR Protein-like Regulator Specifically Recognizes RecA Protein-independent Promoter Motif and Broadly Regulates Expression of DNA Damage-inducible Genes in Mycobacteria. J Biol Chem 2011, 286:31159-31167.
  • [75]Smollett KL, Dawson LF, Davis EO: SigG Does Not Control Gene Expression in Response to DNA Damage in Mycobacterium tuberculosis H37Rv. J Bacteriol 2011, 193:1007-1011.
  • [76]Park H, Guinn KM, Harrell MI, Liao R, Voskuil MI, Tompa M, Schoolnik GK, Sherman DR: Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol Microbiol 2003, 48:833-843.
  • [77]Bartek IL, Rutherford R, Gruppo V, Morton RA, Morris RP, Klein MR, Visconti KC, Ryan GJ, Schoolnik GK, Lenaerts A, Voskuil MI: The DosR regulon of M. tuberculosis and antibacterial tolerance. Tuberculosis (Edinb) 2009, 89:310-316.
  • [78]Chao MC, Rubin EJ: Letting sleeping dos lie: does dormancy play a role in tuberculosis? Annu Rev Microbiol 2010, 64:293-311.
  • [79]Gerasimova A, Kazakov AE, Arkin AP, Dubchak I, Gelfand MS: Comparative Genomics of the Dormancy Regulons in Mycobacteria. J Bacteriol 2011, 193:3446-3452.
  • [80]Tan MP, Sequeira P, Lin WW, Phong WY, Cliff P, Ng SH, Lee BH, Camacho L, Schnappinger D, Ehrt S, Dick T, Pethe K, Alonso S: Nitrate respiration protects hypoxic Mycobacterium tuberculosis against acid- and reactive nitrogen species stresses. PLoS One 2010, 5:e13356.
  • [81]Maciąg A, Dainese E, Rodriguez GM, Milano A, Provvedi R, Pasca MR, Smith I, Palù G, Riccardi G, Manganelli R: Global Analysis of the Mycobacterium Tuberculosis Zur (FurB) Regulon. J Bacteriol 2007, 189:730-740.
  • [82]Rodriguez GM, Voskuil MI, Gold B, Schoolnik GK, Smith I: ideR, an Essential Gene in Mycobacterium Tuberculosis: Role of IdeR in Iron-Dependent Gene Expression, Iron Metabolism, and Oxidative Stress Response. Infect Immun 2002, 70:3371-3381.
  • [83]Siegrist MS, Unnikrishnan M, McConnell MJ, Borowsky M, Cheng T-Y, Siddiqi N, Fortune SM, Moody DB, Rubin EJ: Mycobacterial Esx-3 Is Required for Mycobactin-Mediated Iron Acquisition. Proc Natl Acad Sci 2009, 106:18792-18797.
  • [84]Chauhan S, Sharma D, Singh A, Surolia A, Tyagi JS: Comprehensive insights into Mycobacterium tuberculosis DevR (DosR) regulon activation switch. Nucleic Acids Res 2011, 39:7400-7414.
  文献评价指标  
  下载次数:136次 浏览次数:50次