期刊论文详细信息
BMC Microbiology
The gastric caeca of pentatomids as a house for actinomycetes
Fernando L Cônsoli2  Simone S Prado1  Tiago D Zucchi2 
[1]Lab de Quarentena “Costa Lima”, EMBRAPA Meio Ambiente, Rodovia SP 340, Km 127,5, CP 69, 13820-000, Jaguariúna, SP, Brazil
[2]Lab de Interações em Insetos, Depto de Entomologia & Acarologia, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo (ESALQ/USP), Av Pádua Dias 11, CP 9, 13418-900, Piracicaba, SP, Brazil
关键词: Symbiosis;    Pentatomidae;    Bacterial diversity;    Actinobacteria;   
Others  :  1221891
DOI  :  10.1186/1471-2180-12-101
 received in 2011-12-06, accepted in 2012-05-30,  发布年份 2012
PDF
【 摘 要 】

Background

Microbes are extensively associated with insects, playing key roles in insect defense, nutrition and reproduction. Most of the associations reported involve Proteobacteria. Despite the fact that Actinobacteria associated with insects were shown to produce antibiotic barriers against pathogens to the hosts or to their food and nutrients, there are few studies focusing on their association with insects. Thus, we surveyed the Actinobacteria diversity on a specific region of the midgut of seven species of stinkbugs (Hemiptera: Pentatomidae) known to carry a diversity of symbiotically-associated Proteobacteria.

Results

A total of 34 phylotypes were placed in 11 different Actinobacteria families. Dichelops melacanthus held the highest diversity with six actinobacteria families represented by nine phylotypes. Thyanta perditor (n = 7), Edessa meditabunda (n = 5), Loxa deducta (n = 4) and Pellaea stictica (n = 3) were all associated with three families. Piezodorus guildini (n = 3) and Nezara viridula (n = 3) had the lowest diversity, being associated with two (Propionibacteriaceae and Mycobacteriaceae) and one (Streptomyceataceae) families, respectively. Corynebacteriaceae and Mycobacteriaceae were the most common families with phylotypes from three different insect species each one.

Conclusions

Many phylotypes shared a low 16S rRNA gene similarity with their closest type strains and formed new phyletic lines on the periphery of several genera. This is a strong indicative that stinkbug caeca can harbor new species of actinobacteria, which might be derived from specific associations with the species of stinkbugs studied. Although the well-known role of actinobacteria as a source of biomolecules, the ecological features of these symbionts on the stinkbugs biology remain unknown.

【 授权许可】

   
2012 Zucchi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150804075350991.pdf 798KB PDF download
Figure 1. 184KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Grimaldi DA, Engel MS: Evolution of the insects. Cambridge University Press, Cambridge U.K.; New York; 2005.
  • [2]Saier MH: Bugs. Water Air Soil Pollut 2010, 205(Suppl 1):S5-S7.
  • [3]Douglas AE: Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteriaBuchnera. Annu Rev Entomol 1998, 43:17-37.
  • [4]Ohkuma M: Termite symbiotic systems: efficient bio-recycling of lignocellulose. Appl Microbiol Biotechnol 2003, 61(1):1-9.
  • [5]Hosokawa T, Kikuchi Y, Shimada M, Fukatsu T: Obligate symbiont involved in pest status of host insect. Proc Biol Sci 2007, 274(1621):1979-1984.
  • [6]Moran NA: Symbiosis. Curr Biol 2006, 16(20):R866-R871.
  • [7]Schoenian I, Spiteller M, Ghaste M, Wirth R, Herz H, Spiteller D: Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proc Natl Acad Sci U S A 2011, 108(5):1955-1960.
  • [8]Douglas AE: Symbiotic microorganisms: untapped resources for insect pest control. Trends Biotechnol 2007, 25(8):338-342.
  • [9]Beard CB, Cordon-Rosales C, Durvasula RV: Bacterial symbionts of the Triatominae and their potential use in control of chagas disease transmission. Annu Rev Entomol 2002, 47:123-141.
  • [10]Prado SS, Almeida RPP: Role of symbiotic gut bacteria in the development ofAcrosternum hilareandMurgantia histrionica(Hemiptera: Pentatomidae). Entomol Exp Appl 2009, 132(1):21-29.
  • [11]Prado SS, Almeida RPP: Phylogenetic placement of pentatomid stink bug gut symbionts. Curr Microbiol 2009, 58(1):64-69.
  • [12]Kikuchi Y, Hosokawa T, Nikoh N, Fukatsu T: Gut symbiotic bacteria in the cabbage bugsEurydema rugosaandEurydema dominulus(Heteroptera: Pentatomidae). Appl Entomol Zool 2011, 47(1):1-8.
  • [13]Tada A, Kikuchi Y, Hosokawa T, Musolin DL, Fujisaki K, Fukatsu T: Obligate association with gut bacterial symbiont in Japanese populations of the southern green stinkbugNezara viridula(Heteroptera: Pentatomidae). Appl Entomol Zool 2011, 46(4):483-488.
  • [14]Schäfer A, Konrad R, Kuhnigk T, Kampfer P, Hertel H, Konig H: Hemicellulose-degrading bacteria and yeasts from the termite gut. J Appl Bacteriol 1996, 80(5):471-478.
  • [15]Thongaram T, Hongoh Y, Kosono S, Ohkuma M, Trakulnaleamsai S, Noparatnaraporn N, Kudo T: Comparison of bacterial communities in the alkaline gut segments among various species of higher termites. Extremophiles 2005, 9(3):229-238.
  • [16]Mohr K, Tebbe CC: Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Envrion Microbiol 2006, 8(2):258-272.
  • [17]Park DS, Oh H-W, Jeong W-J, Kim H, Park H-Y, Bae KS: A culture-based study of the bacterial communities within the guts of nine longicorn beetle species and their exo-enzyme producing properties for degrading xylan and pectin. J Microbiol 2007, 45(5):394-401.
  • [18]Harington JS: Synthesis of thiamine and folic acid byNocardia rhodnii, the micro-symbiont ofRhodnius prolixus. Nature 1960, 188:1027-1028.
  • [19]Kaltenpoth M, Winter SA, Kleinhammer A: Localization and transmission route ofCoriobacterium glomerans, the endosymbiont of pyrrhocorid bugs. FEMS Microbiol Ecol 2009, 69(3):373-383.
  • [20]Kaltenpoth M, Goettler W, Dale C, Stubblefield JW, Herzner G, Roeser-Mueller K, Strohm E: ‘CandidatusStreptomyces philanthi’, an endosymbiotic streptomycete in the antennae ofPhilanthusdigger wasps. Int J Syst Evol Microbiol 2006, 56(6):1403-1411.
  • [21]Zucchi TD, Guidolin AS, Consoli FL: Isolation and characterization of actinobacteria ectosymbionts fromAcromyrmex subterraneus brunneus(Hymenoptera, Formicidae). Microbiol Res 2011, 166(1):68-76.
  • [22]Kaltenpoth M: Actinobacteria as mutualists: general healthcare for insects? Trends Microbiol 2009, 17(12):529-535.
  • [23]Hosokawa T, Kikuchi Y, Nikoh N, Shimada M, Fukatsu T: Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLoS Biol 2006, 4(10):e337.
  • [24]Kikuchi Y, Hosokawa T, Nikoh N, Meng XY, Kamagata Y, Fukatsu T: Host-symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of acanthosomatid stinkbugs. BMC Biol 2009, 7:2. BioMed Central Full Text
  • [25]Lefebvre T, Miambi E, Pando A, Diouf M, Rouland-Lefèvre C: Gut-specific actinobacterial community structure and diversity associated with the wood-feeding termite species,Nasutitermes corniger(Motschulsky) described by nested PCR-DGGE analysis. Insectes Sociaux 2009, 56(3):269-276.
  • [26]Pasti MB, Pometto AL, Nuti MP, Crawford DL: Lignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut. Appl Environ Microbiol 1990, 56(7):2213-2218.
  • [27]Takeishi H, Anzai H, Urai M, Aizawa T, Wada N, Iwabuchi N, Sunairi M, Nakajima M: Xylanolytic and alkaliphilicDietziasp. isolated from larvae of the Japanese horned beetle,Trypoxylus dichotomus. Actinomycetologica 2006, 20(2):49-55.
  • [28]Haas F, König H: Coriobacterium glomerans gen. nov., sp. nov. from the intestinal tract of the red soldier bug. Int J Syst Bacteriol 1988, 38(4):382-384.
  • [29]Hill P, Campbell JA, Petrie IA: Rhodnius prolixusand its symbiotic actinomycete: a microbiological, physiological and behavioural study. Proc R Soc Lond B Biol Sci 1976, 194(1117):501-525.
  • [30]Durvasula RV, Sundaram RK, Kirsch P, Hurwitz I, Crawford CV, Dotson E, Beard CB: Genetic transformation of a Corynebacterial symbiont from the Chagas disease vectorTriatoma infestans. Exp Parasitol 2008, 119(1):94-98.
  • [31]Rodríguez J, Pavía P, Montilla M, Puerta CJ: Identifying triatomine symbiontRhodococcus rhodniias intestinal bacteria fromRhodnius ecuadoriensis(Hemiptera: Reduviidae) laboratory insects. Int J Tropical Insect Sci 2011, 31(1–2):34-37.
  • [32]Yassin AF: Rhodococcus triatomaesp. nov., isolated from a blood-sucking bug. Int J Syst Evol Microbiol 2005, 55(4):1575-1579.
  • [33]Baines S: The role of the symbiotic bacteria in the nutrition ofRhodnius prolixus(Hemiptera). J Exp Biol 1956, 33:533-541.
  • [34]Eichler S, Schaub GA: The effects of aposymbiosis and of an infections withBlastocrithidia triatomae(Trypanosomatidae) on the tracheal system of the reduviid bugsRhodnius prolixusandTriatoma infestans. J Insect Physiol 1998, 44(2):131-140.
  • [35]Buchner P: Endosymbiosis of animals with plant microorganisms, Rev Eng edn. Interscience Publishers, New York; 1965.
  • [36]Baumann P: Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Ann Rev Microbiol 2005, 59:155-189.
  • [37]Douglas AE: Mycetocyte symbiosis in insects. Biol Rev Camb Philos Soc 1989, 64(4):409-434.
  • [38]Abe Y, Mishiro K, Takanashi M: Symbiont of brown-winged green bug,Plautia staliScott. Japanese Journal of Applied Entomology and Zoology 1995, 39(2):109-115.
  • [39]Kikuchi Y, Hosokawa T, Fukatsu T: Insect-microbe mutualism without vertical transmission: a stinkbug acquires beneficial gut symbiont from environment every generation. Appl Environ Microbiol 2007, 73(13):4308-4316.
  • [40]Seipke RF, Barke J, Brearley C, Hill L, Yu DW, Goss RJ, Hutchings MI: A singleStreptomycessymbiont makes multiple antifungals to support the fungus farming antAcromyrmex octospinosus. PLoS One 2011, 6(8):e22028.
  • [41]Durvasula RV, Gumbs A, Panackal A, Kruglov O, Taneja J, Kang AS, Cordon-Rosales C, Richards FF, Whitham RG, Beard CB: Expression of a functional antibody fragment in the gut ofRhodnius prolixusvia transgenic bacterial symbiontRhodococcus rhodnii. Med Vet Entomol 1999, 13(2):115-119.
  • [42]Zindel R, Gottlieb Y, Aebi A: Arthropod symbioses: a neglected parameter in pest- and disease control programmes. J Appl Ecol 2011, 48(4):864-872.
  • [43]Poulsen M, Oh DC, Clardy J, Currie CR: Chemical analyses of wasp-associatedStreptomycesbacteria reveal a prolific potential for natural products discovery. PLoS One 2011, 6(2):e16763.
  • [44]Prado SS, Zucchi TD: Host-symbiont interactions for potentially managing heteropteran pests. Psyche 2012, 10:20-30. in press
  • [45]Tóth EM, Hell É, Kovács G, Borsodi AK, Márialigeti K: Bacteria isolated from the different developmental stages an larval organs of the obligate parasitic fly,Wohlfahrtia magnifica(Diptera: Sarcophagidae). Microb Ecol 2006, 51(1):13-21.
  • [46]Katı H, İnce İA, Demir İ, Demirbağ Z: Brevibacterium pityocampae sp. nov., isolated from caterpillars of Thaumetopoea pityocampa (Lepidoptera, Thaumetopoeidae). Int J Syst Evol Microbiol 2010, 60(2):312-316.
  • [47]Selvakumar G, Sushil SN, Stanley J, Mohan M, Deol A, Rai D, Ramkewal , Bhatt JC, Gupta HS: Brevibacterium frigoritoleransa novel entomopathogen ofAnomala dimidiataandHolotrichia longipennis(Scarabaeidae: Coleoptera). Biocontrol Sci Techn 2011, 21(7):821-827.
  • [48]Sunnucks P, Hales DF: Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genusSitobion(Hemiptera: Aphididae). Mol Biol Evol 1996, 13(3):510-524.
  • [49]Stach JE, Maldonado LA, Ward AC, Goodfellow M, Bull AT: New primers for the class Actinobacteria: application to marine and terrestrial environments. Envrion Microbiol 2003, 5(10):828-841.
  • [50]Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW: EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 2007, 57(10):2259-2261.
  • [51]Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 2007, 24(8):1596-1599.
  • [52]Felsenstein J: Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981, 17(6):368-376.
  • [53]Fitch WM: Toward defining the course of evolution: minimum change for specific tree topology. Syst Biol 1971, 20(4):406-416.
  • [54]Saitou N, Nei M: The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987, 4(4):404-425.
  • [55]Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003, 52(5):696-704.
  • [56]Jukes TH, Cantor CR: Evolution of protein molecules. In Mammalian Protein Metabolism. Edited by Munro HN. Academic Press, New York; 1969:21-123.
  • [57]Felsenstein J: Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985, 39(4):783-791.
  文献评价指标  
  下载次数:9次 浏览次数:16次