期刊论文详细信息
BMC Microbiology
Human serum inhibits adhesion and biofilm formation in Candida albicans
Donghui Yan1  Jianrong Su1  Zhizhong Liu2  Xiurong Ding1 
[1] Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China;The Centre for Laboratory Diagnosis, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
关键词: Candida albicans;    Adhesion;    Biofilm;    Human serum;   
Others  :  1141533
DOI  :  10.1186/1471-2180-14-80
 received in 2013-10-12, accepted in 2014-03-21,  发布年份 2014
PDF
【 摘 要 】

Background

Candida albicans can form biofilms on intravenous catheters; this process plays a key role in the pathogenesis of catheter infections. This study evaluated the effect of human serum (HS) on C. albicans biofilm formation and the expression of adhesion-related genes in vitro. A C. albicans laboratory strain (ATCC90028) and three clinical strains were grown for 24 h in RPMI 1640 supplemented with HS or RPMI 1640 alone (as a control). The growth of biofilm cells of four strains was monitored by a Live Cell Movie Analyzer, and by XTT reduction assay. The expression of the adhesion-related genes BCR1, ALS1, ALS3, HWP1 and ECE1 was analyzed by RT-PCR at three time points (60 min, 90 min, and 24 h).

Results

In the adhesion phase, C. albicans cells kept a Brownian movement in RPMI medium containing HS until a large number of germ tubes were formed. In the control group, C. albicans cells quickly adhered to the bottom of the reaction plate. Compared with RPMI 1640, medium supplemented with 3–50% HS caused a significant decrease in biofilm development (all p < 0.001). However, the presence of HS had no significant inhibitory effect on the pre-adhered biofilms (all p > 0.05). Biofilm formation was also inhibited by heat-inactivated and proteinase K pre-treated HS. The presence of 50% HS did not significantly affect the planktonic growth of C. albicans (p > 0.05). At three time points, HS inhibited expression of the ALS1 and ALS3 genes and promoted expression of the HWP1 and ECE1 genes. Significant up-regulation of BCR1 was observed only at the 90-min point.

Conclusions

Human serum reduces biofilm formation by inhibiting the adhesion of C. albicans cells. This response may be associated with the down-regulation of adhesion-related genes ALS1, ALS3 and BCR1. The inhibitory serum component is protease-resistant and heat stable.

【 授权许可】

   
2014 Ding et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327074706206.pdf 560KB PDF download
Figure 4. 21KB Image download
Figure 3. 22KB Image download
Figure 2. 22KB Image download
Figure 1. 23KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB: Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 2004, 39:309-317.
  • [2]Hajjeh RA, Sofair AN, Harrison LH, Lyon GM, Arthington-Skaggs BA, Mirza SA, Phelan M, Morgan J, Lee-Yang W, Ciblak MA, Benjamin LE, Sanza LT, Huie S, Yeo SF, Brandt ME, Warnock DW: Incidence of bloodstream infections due to Candida species and in vitro susceptibilities of isolates collected from 1998 to 2000 in a population-based active surveillance program. J Clin Microbiol 2004, 42:1519-1527.
  • [3]Kumamoto CA: Candida biofilms. Curr Opin Microbiol 2002, 5:608-611.
  • [4]Douglas LJ: Candida biofilms and their role in infection. Trends Microbiol 2003, 11:30-36.
  • [5]Kojic EM, Darouiche RO: Candida infections of medical devices. Clin Microbiol Rev 2004, 17:255-267.
  • [6]Ramage G, Saville SP, Thomas DP, López-Ribot JL: Candida biofilms: an update. Eukaryot Cell 2005, 4:633-638.
  • [7]López-Ribot JL: Candida albicans biofilms: more than filamentation. Curr Biol 2005, 15:R453-R455.
  • [8]Li F, Svarovsky MJ, Karlsson AJ, Wagner JP, Marchillo K, Oshel P, Andes D, Palecek SP: Eap1p, an Adhesin That Mediates Candida albicans Biofilm Formation in Vitro and in Vivo. Eukaryot Cell 2007, 6:931-939.
  • [9]Deveau A, Hogan DA: Linking quorum sensing regulation and biofilm formation by Candida albicans. Methods Mol Biol 2011, 692:219-233.
  • [10]Nobile CJ, Fox EP, Nett JE, Sorrells TR, Mitrovich QM, Hernday AD, Tuch BB, Andes DR, Johnson AD: A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 2012, 148:126-138.
  • [11]Nobile CJ, Mitchell AP: Genetics and genomics of Candida albicans biofilm formation. Cell Microbiol 2006, 8:1382-1391.
  • [12]Nobile CJ, Andes DR, Nett JE, Smith FJ, Yue F, Phan QT, Edwards JE, Filler SG, Mitchell AP: Critical Role of Bcr1-Dependent Adhesins in C. albicans Biofilm Formation In Vitro and In Vivo. PLoS Pathog 2006, 2:636-649.
  • [13]Ganguly S, Mitchell AP: Mucosal biofilms of Candida albicans. Curr Opin Microbiol 2011, 14:380-385.
  • [14]Samaranayake YH, Cheung BP, Yau JY, Yeung SK, Samaranayake LP: Human Serum Promotes Candida albicans Biofilm Growth and Virulence Gene Expression on Silicone Biomaterial. PLoS One 2013, 8:e62902.
  • [15]Abraham NM, Jefferson KK: A low molecular weight component of serum inhibits biofilm formation in Staphylococcus aureus. Microb Pathog 2010, 49:388-391.
  • [16]Hammond A, Dertien J, Colmer-Hamood JA, Griswold JA, Hamood AN: Serum inhibits P. aeruginosa biofilm formation on plastic surfaces and intravenous catheters. J Surg Res 2010, 159:735-746.
  • [17]Singh PK, Parsek MR, Greenberg EP, Welsh MJ: A component of innate immunity prevents bacterial biofilm development. Nature 2002, 417:552-555.
  • [18]Cole GT, Halawa AA, Anaissie EJ: The role of the gastrointestinal tract in hematogenous candidiasis: from the laboratory to the bedside. Clin Infect Dis 1996, 22(Suppl 2):73-88.
  • [19]Rogers T, Balish E: Experimental Candida albicans infection in conventional mice and germfree rats. Infect Immun 1976, 14:33-38.
  • [20]Calderone RA, Fonzi WA: Virulence factors of Candida albicans. Trends Microbiol 2001, 9:327-335.
  • [21]Biswas S, Van Dijck P, Datta A: Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol Mol Biol Rev 2007, 71:348-376.
  • [22]Huang G: Regulation of phenotypic transitions in the fungal pathogen Candida albicans. Virulence 2012, 3:251-261.
  • [23]Martin R, Albrecht-Eckardt D, Brunke S, Hube B, Hünniger K, Kurzai O: A core filamentation response network in Candida albicans is restricted to eight genes. PLoS One 2013, 8:e58613.
  • [24]Ramage G, VandeWalle K, López-Ribot JL, Wickes BL: The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. FEMS Microbiol Lett 2002, 214:95-100.
  • [25]Argimón S, Wishart JA, Leng R, Macaskill S, Mavor A, Alexandris T, Nicholls S, Knight AW, Enjalbert B, Walmsley R, Odds FC, Gow NA, Brown AJ: Developmental regulation of an adhesin gene during cellular morphogenesis in the fungal pathogen Candida albicans. Eukaryot Cell 2007, 6:682-692.
  • [26]Rodier MH, Imbert C, Kauffmann-Lacroix C, Daniault G, Jacquemin JL: Immunoglobulins G could prevent adherence of Candida albicans to polystyrene and extracellular matrix components. J Med Microbiol 2003, 52(Pt 5):373-377.
  • [27]Tsai PW, Yang CY, Chang HT, Lan CY: Human antimicrobial peptide LL-37 inhibits adhesion of Candida albicans by interacting with yeast cell-wall carbohydrates. PLoS One 2011, 6:e17755.
  • [28]Ardehali R, Shi L, Janatova J, Mohammad SF, Burns GL: The inhibitory activity of serum to prevent bacterial adhesion is mainly due to apo-transferrin. J Biomed Mater Res A 2003, 66:21-28.
  • [29]Finkel JS, Mitchell AP: Genetic control of Candida albicans biofilm development. Nat Rev Microbiol 2011, 9:109-118.
  • [30]Nobile CJ, Schneider HA, Nett JE, Sheppard DC, Filler SG, Andes DR, Mitchell AP: Complementary adhesin function in C. albicans biofilm formation. Curr Biol 2008, 18:1017-1024.
  • [31]Finkel JS, Xu W, Huang D, Hill EM, Desai JV, Woolford CA, Nett JE, Taff H, Norice CT, Andes DR, Lanni F, Mitchell AP: Portrait of Candida albicans Adherence Regulators. PLoS Pathog 2012, 8:e1002525.
  • [32]Nobile CJ, Mitchell AP: Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr Biol 2005, 15:1150-1155.
  • [33]Hoyer LL: The ALS gene family of Candida albicans. Trends Microbiol 2001, 9:176-180.
  • [34]Sheppard DC, Yeaman MR, Welch WH, Phan QT, Fu Y, Ibrahim AS, Filler SG, Zhang M, Waring AJ, Edwards JE Jr: Functional and structural diversity in the Als protein family of Candida albicans. J Biol Chem 2004, 279:30480-30489.
  • [35]Zhao X, Oh SH, Yeater KM, Hoyer LL: Analysis of the Candida albicans Als2p and Als4p adhesins suggests the potential for compensatory function within the Als family. Microbiology 2005, 151(Pt 5):1619-1630.
  • [36]Bastidas RJ, Heitman J, Cardenas ME: The protein kinase Tor1 regulates adhesin gene expression in Candida albicans. PLoS Pathog 2009, 5:e1000294.
  • [37]Sundstrom P: Adhesion in Candida spp. Cell Microbiol 2002, 4:461-469.
  • [38]Nobile CJ, Nett JE, Andes DR, Mitchell AP: Function of Candida albicans Adhesin Hwp1 in Biofilm Formation. Eukaryot Cell 2006, 5:1604-1610.
  • [39]Ramage G, Vande Walle K, Wickes BL, López-Ribot JL: Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob Agents Chemother 2001, 45:2475-2479.
  • [40]Chandra J, Mukherjee PK, Ghannoum MA: In vitro growth and analysis of Candida biofilms. Nat Protoc 2008, 3:1909-1924.
  文献评价指标  
  下载次数:40次 浏览次数:39次