期刊论文详细信息
BMC Genomics
Altered gene expression patterns of innate and adaptive immunity pathways in transgenic rainbow trout harboring Cecropin P1 transgene
Thomas T Chen1  Maria J Chen1  Chun-Mean Lin1  Jay H Lo1 
[1] Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
关键词: Innate/adaptive immunity;    Microarray;    Antimicrobial peptide;    Cecropin;    Disease resistant transgenic fish;    Rainbow trout;   
Others  :  1128469
DOI  :  10.1186/1471-2164-15-887
 received in 2014-08-06, accepted in 2014-10-03,  发布年份 2014
PDF
【 摘 要 】

Background

We have recently developed several homozygous families of transgenic rainbow trout harbouring cecropin P1 transgene. These fish exhibit resistance characteristic to infection by Aeromonas salmonicida and infectious hematopoietic necrosis virus (IHNV). In our earlier studies we have reported that treatment of a rainbow trout macrophage cell line (RTS11) with a linear cationic α-helical antimicrobial peptide (e.g., cecropin B) resulted in elevated levels of expression of two pro-inflammatory relevant genes (e.g., IL-1β and COX-2). Therefore, we hypothesized that in addition to the direct antimicrobial activity of cecropin P1 in the disease resistant transgenic rainbow trout, this antimicrobial peptide may also affect the expression of immune relevant genes in the host. To confirm this hypothesis, we launched a study to determine the global gene expression profiles in three immune competent organs of cecropin P1 transgenic rainbow trout by using a 44k salmonid microarray.

Results

From the microarray data, a total of 2480 genes in the spleen, 3022 in the kidney, and 2102 in the liver were determined as differentially expressed genes (DEGs) in the cecropin P1 transgenic rainbow trout when compared to the non-transgenics. There were 478 DEGs in common among three tissues. Enrichment analyses conducted by two different bioinformatics tools revealed a tissue specific profile of functional pathway perturbation. Many of them were directly related to innate immune system such as phagocytosis, lysosomal processing, complement activation, antigen processing/presentation, and leukocyte migration. Perturbation of other biological functions that might contribute indirectly to host immunity was also observed.

Conclusions

The gene product of cecropin P1 transgene produced in the disease resistant transgenic rainbow trout not only can kill the pathogens directly but also exert multifaceted immunomodulatory properties to boost host immunity. The identified genes involved in different pathways related to immune function are valuable indicators associated with enhanced host immunity. These genes may serve as markers for selective breeding of rainbow trout or other aquaculture important fish species bearing traits of disease resistance.

【 授权许可】

   
2014 Lo et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150223211848815.pdf 1879KB PDF download
Figure 4. 117KB Image download
Figure 3. 120KB Image download
Figure 2. 96KB Image download
Figure 1. 132KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Chen TT, Lin CM, Chen MJ, Lo JH, Chiou PP, Gong HY, Chen MHC, Wu JL, Yarish C: Transgenic Marine Organisms. Springer Handbook of Marine Biotechnology 2014. (in press)
  • [2]Boman HG, Nilsson-Faye I, Paul K, Rasmuson T Jr: Insect immunity. I. Characteristics of an inducible cell-free antibacterial reaction in hemolymph of Samia cynthia pupae. Infect Immun 1974, 10(1):136-145.
  • [3]Lee JY, Boman A, Sun CX, Andersson M, Jornvall H, Mutt V, Boman HG: Antibacterial peptides from pig intestine: isolation of a mammalian cecropin. Proc Natl Acad Sci U S A 1989, 86(23):9159-9162.
  • [4]Shai Y: Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1999, 1462(1–2):55-70.
  • [5]Chiou PP, Lin CM, Perez L, Chen TT: Effect of cecropin B and a synthetic analogue on propagation of fish viruses in vitro. Mar Biotechnol (NY) 2002, 4(3):294-302.
  • [6]Sarmasik A, Warr G, Chen TT: Production of transgenic medaka with increased resistance to bacterial pathogens. Mar Biotechnol (NY) 2002, 4(3):310-322.
  • [7]Chiou PP, Chen MJ, Lin CM, Khoo J, Larson J, Holt R, Leong JA, Thorgarrd G, Chen TT: Production of homozygous transgenic rainbow trout with enhanced disease resistance. Mar Biotechnol (NY) 2014, 16(3):299-308.
  • [8]Hilchie AL, Wuerth K, Hancock RE: Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat Chem Biol 2013, 9(12):761-768.
  • [9]Lai Y, Gallo RL: AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 2009, 30(3):131-141.
  • [10]Peter Chiou P, Khoo J, Bols NC, Douglas S, Chen TT: Effects of linear cationic alpha-helical antimicrobial peptides on immune-relevant genes in trout macrophages. Dev Comp Immunol 2006, 30(9):797-806.
  • [11]Jantzen SG, Sanderson DS, von Schalburg KR, Yasuike M, Marass F, Koop BF: A 44K microarray dataset of the changing transcriptome in developing Atlantic salmon (Salmo salar L.). BMC Res Notes 2011, 4:88. BioMed Central Full Text
  • [12]Zapata AG, Chiba A, Varas A: Cells and Tissues of the Immune System of Fish. San Diego, CA: The Fish Immune System Organism, Pathogen and Environment Academic Press; 1996:1-62.
  • [13]Tabas-Madrid D, Nogales-Cadenas R, Pascual-Montano A: GeneCodis3: a non-redundant and modular enrichment analysis tool for functional genomics. Nucleic Acids Res 2012, 40(Web Server issue):W478-W483.
  • [14]Khatri P, Sirota M, Butte AJ: Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol 2012, 8(2):e1002375.
  • [15]Carmona-Saez P, Chagoyen M, Tirado F, Carazo JM, Pascual-Montano A: GENECODIS: a web-based tool for finding significant concurrent annotations in gene lists. Genome Biol 2007, 8(1):R3. BioMed Central Full Text
  • [16]da Huang W, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009, 37(1):1-13.
  • [17]Brogden KA, Ackermann M, McCray PB Jr, Tack BF: Antimicrobial peptides in animals and their role in host defences. Int J Antimicrob Agents 2003, 22(5):465-478.
  • [18]Uribe C, Folch H, Enriquez R, Moran G: Innate and adaptive immunity in teleost fish: a review. Vet Med 2011, 56(10):486-503.
  • [19]Rauta PR, Nayak B, Das S: Immune system and immune responses in fish and their role in comparative immunity study: a model for higher organisms. Immunol Lett 2012, 148(1):23-33.
  • [20]Agius C, Roberts RJ: Melano-macrophage centres and their role in fish pathology. J Fish Dis 2003, 26(9):499-509.
  • [21]Espenes A, Press CM, Dannevig BH, Landsverk T: Immune-complex trapping in the splenic ellipsoids of rainbow trout (Oncorhynchus mykiss). Cell Tissue Res 1995, 282(1):41-48.
  • [22]Zarkadis IK, Mastellos D, Lambris JD: Phylogenetic aspects of the complement system. Dev Comp Immunol 2001, 25(8–9):745-762.
  • [23]Sakai DK: The non-specific activation of rainbow trout, Salmo gairdneri Richardson, complement by Aeromonas salmonicida extracellular products and the correlation of complement activity with the inactivation of lethal toxicity products. J Fish Dis 1984, 7(5):329-338.
  • [24]Johnson E, Smith P: Attachment and phagocytosis by salmon macrophages of agarose beads coated with human C3b and C3bi. Dev Comp Immunol 1984, 8(3):623-630.
  • [25]Sakai DK: Opsonization by fish antibody and complement in the immune phagocytosis by peritoneal exudate cells isolated from salmonid fishes. J Fish Dis 1984, 7(1):29-38.
  • [26]Desjardins M: ER-mediated phagocytosis: a new membrane for new functions. Nat Rev Immunol 2003, 3(4):280-291.
  • [27]Mantegazza AR, Magalhaes JG, Amigorena S, Marks MS: Presentation of phagocytosed antigens by MHC class I and II. Traffic 2013, 14(2):135-152.
  • [28]Vallejo AN, Miller NW, William Clem L: Antigen processing and presentation in teleost immune responses. Annu Rev Fish Dis 1992, 2:73-89.
  • [29]Bassity E, Clark TG: Functional identification of dendritic cells in the teleost model, rainbow trout (Oncorhynchus mykiss). PLoS ONE 2012, 7(3):e33196.
  • [30]Zwollo P, Cole S, Bromage E, Kaattari S: B cell heterogeneity in the teleost kidney: evidence for a maturation gradient from anterior to posterior kidney. J Immunol 2005, 174(11):6608-6616.
  • [31]Moser K, Tokoyoda K, Radbruch A, MacLennan I, Manz RA: Stromal niches, plasma cell differentiation and survival. Curr Opin Immunol 2006, 18(3):265-270.
  • [32]Ye J, Kaattari I, Kaattari S: Plasmablasts and plasma cells: reconsidering teleost immune system organization. Dev Comp Immunol 2011, 35(12):1273-1281.
  • [33]Suarez-Alvarez B, Lopez-Vazquez A, Lopez-Larrea C: Mobilization and homing of hematopoietic stem cells. Adv Exp Med Biol 2012, 741:152-170.
  • [34]Meseguer J, Lopez-Ruiz A, Garcia-Ayala A: Reticulo-endothelial stroma of the head-kidney from the seawater teleost gilthead seabream (Sparus aurata L.): an ultrastructural and cytochemical study. Anat Rec 1995, 241(3):303-309.
  • [35]Diago ML, López-Fierro MP, Razquin B, Villena A: Establishment and characterization of a pronephric stromal cell line (TPS) from rainbow trout, Oncorhynchus mykissW. Fish Shellfish Immunol 1995, 5(6):441-457.
  • [36]Yu XF, Han ZC: Matrix metalloproteinases in bone marrow: roles of gelatinases in physiological hematopoiesis and hematopoietic malignancies. Histol Histopathol 2006, 21(5):519-531.
  • [37]Chen XD: Extracellular matrix provides an optimal niche for the maintenance and propagation of mesenchymal stem cells. Birth Defects Res C Embryo Today 2010, 90(1):45-54.
  • [38]Sorokin L: The impact of the extracellular matrix on inflammation. Nat Rev Immunol 2010, 10(10):712-723.
  • [39]Castillo-Briceno P, Arizcun-Arizcun M, Meseguer J, Mulero V, Garcia-Ayala A: Correlated expression profile of extracellular matrix-related molecules during the inflammatory response of the teleost fish gilthead seabream. Dev Comp Immunol 2010, 34(10):1051-1058.
  • [40]Castillo-Briceno P, Sepulcre MP, Chaves-Pozo E, Meseguer J, Garcia-Ayala A, Mulero V: Collagen regulates the activation of professional phagocytes of the teleost fish gilthead seabream. Mol Immunol 2009, 46(7):1409-1415.
  • [41]Liu L, Cash TP, Jones RG, Keith B, Thompson CB, Simon MC: Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell 2006, 21(4):521-531.
  • [42]Liu L, Wise DR, Diehl JA, Simon MC: Hypoxic reactive oxygen species regulate the integrated stress response and cell survival. J Biol Chem 2008, 283(45):31153-31162.
  • [43]Spriggs KA, Bushell M, Willis AE: Translational regulation of gene expression during conditions of cell stress. Mol Cell 2010, 40(2):228-237.
  • [44]Patel J, McLeod LE, Vries RG, Flynn A, Wang X, Proud CG: Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. Eur J Biochem 2002, 269(12):3076-3085.
  • [45]Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J: Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 2010, 11(2):136-140.
  • [46]Vladimer GI, Marty-Roix R, Ghosh S, Weng D, Lien E: Inflammasomes and host defenses against bacterial infections. Curr Opin Microbiol 2013, 16(1):23-31.
  • [47]Latz E, Xiao TS, Stutz A: Activation and regulation of the inflammasomes. Nat Rev Immunol 2013, 13(6):397-411.
  • [48]Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M, Sarkar A, Warren SE, Wewers MD, Aderem A: Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol 2010, 11(12):1136-1142.
  • [49]Aachoui Y, Sagulenko V, Miao EA, Stacey KJ: Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection. Curr Opin Microbiol 2013, 16(3):319-326.
  • [50]Angosto D, Lopez-Castejon G, Lopez-Munoz A, Sepulcre MP, Arizcun M, Meseguer J, Mulero V: Evolution of inflammasome functions in vertebrates: Inflammasome and caspase-1 trigger fish macrophage cell death but are dispensable for the processing of IL-1beta. Innate Immun 2012, 18(6):815-824.
  • [51]Vyleta ML, Wong J, Magun BE: Suppression of ribosomal function triggers innate immune signaling through activation of the NLRP3 inflammasome. PLoS ONE 2012, 7(5):e36044.
  • [52]Jenne CN, Kubes P: Immune surveillance by the liver. Nat Immunol 2013, 14(10):996-1006.
  • [53]Zhang YA, Zou J, Chang CI, Secombes CJ: Discovery and characterization of two types of liver-expressed antimicrobial peptide 2 (LEAP-2) genes in rainbow trout. Vet Immunol Immunopathol 2004, 101(3–4):259-269.
  • [54]Bayne CJ, Gerwick L: The acute phase response and innate immunity of fish. Dev Comp Immunol 2001, 25(8–9):725-743.
  • [55]Bransden MP, Carter CG, Nichols PD: Replacement of fish oil with sunflower oil in feeds for Atlantic salmon (Salmo salar L.): effect on growth performance, tissue fatty acid composition and disease resistance. Comp Biochem Physiol B: Biochem Mol Biol 2003, 135(4):611-625.
  • [56]Salem M, Silverstein J, Rexroad CE 3rd, Yao J: Effect of starvation on global gene expression and proteolysis in rainbow trout (Oncorhynchus mykiss). BMC Genomics 2007, 8:328. BioMed Central Full Text
  • [57]Martin SA, Douglas A, Houlihan DF, Secombes CJ: Starvation alters the liver transcriptome of the innate immune response in Atlantic salmon (Salmo salar). BMC Genomics 2010, 11:418. BioMed Central Full Text
  • [58]Grammes F, Takle H: Anti-inflammatory effects of tetradecylthioacetic acid (TTA) in macrophage-like cells from Atlantic salmon (Salmo salar L.). BMC Immunol 2011, 12:41. BioMed Central Full Text
  • [59]Martinez-Rubio L, Morais S, Evensen O, Wadsworth S, Vecino JG, Ruohonen K, Bell JG, Tocher DR: Effect of functional feeds on fatty acid and eicosanoid metabolism in liver and head kidney of Atlantic salmon (Salmo salar L.) with experimentally induced heart and skeletal muscle inflammation. Fish Shellfish Immunol 2013, 34(6):1533-1545.
  • [60]Stulnig TM: Immunomodulation by polyunsaturated fatty acids: mechanisms and effects. Int Arch Allergy Immunol 2003, 132(4):310-321.
  • [61]Yaqoob P: Fatty acids as gatekeepers of immune cell regulation. Trends Immunol 2003, 24(12):639-645.
  • [62]Tocher DR: Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 2003, 11(2):107-184.
  • [63]Secombes CJ, Clements K, Ashton I, Rowley AF: The effect of eicosanoids on rainbow trout, Oncorhynchus mykiss, leucocyte proliferation. Vet Immunol Immunopathol 1994, 42(3–4):367-378.
  • [64]Knight J, Rowley AF: Immunoregulatory activities of eicosanoids in the rainbow trout (Oncorhynchus mykiss). Immunology 1995, 85(3):389-393.
  • [65]Straus DS, Glass CK: Anti-inflammatory actions of PPAR ligands: new insights on cellular and molecular mechanisms. Trends Immunol 2007, 28(12):551-558.
  • [66]Duan SZ, Usher MG, Mortensen RM: PPARs: the vasculature, inflammation and hypertension. Curr Opin Nephrol Hypertens 2009, 18(2):128-133.
  • [67]Varga T, Czimmerer Z, Nagy L: PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim Biophys Acta 2011, 1812(8):1007-1022.
  • [68]Leaver MJ, Boukouvala E, Antonopoulou E, Diez A, Favre-Krey L, Ezaz MT, Bautista JM, Tocher DR, Krey G: Three peroxisome proliferator-activated receptor isotypes from each of two species of marine fish. Endocrinology 2005, 146(7):3150-3162.
  • [69]Andersen O, Eijsink VG, Thomassen M: Multiple variants of the peroxisome proliferator-activated receptor (PPAR) gamma are expressed in the liver of atlantic salmon (Salmo salar). Gene 2000, 255(2):411-418.
  • [70]Sundvold H, Ruyter B, Ostbye TK, Moen T: Identification of a novel allele of peroxisome proliferator-activated receptor gamma (PPARG) and its association with resistance to Aeromonas salmonicida in Atlantic salmon (Salmo salar). Fish Shellfish Immunol 2010, 28(2):394-400.
  • [71]Houston RD, Taggart JB, Cezard T, Bekaert M, Lowe NR, Downing A, Talbot R, Bishop SC, Archibald AL, Bron JE, Penman DJ, Davassi A, Brew F, Tinch AE, Gharbi K, Hamilton A: Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar). BMC Genomics 2014, 15:90. BioMed Central Full Text
  • [72]Muller PY, Janovjak H, Miserez AR, Dobbie Z: Processing of gene expression data generated by quantitative real-time RT-PCR. BioTechniques 2002, 32(6):1372-1374. 1376, 1378–1379
  文献评价指标  
  下载次数:41次 浏览次数:17次