期刊论文详细信息
BMC Neuroscience
Expanded ataxin-7 cause toxicity by inducing ROS production from NADPH oxidase complexes in a stable inducible Spinocerebellar ataxia type 7 (SCA7) model
Anna-Lena Ström1  Ülo Langel1  Staffan Lindberg1  Xin Yu1  Abiodun Ajayi1 
[1] Department of Neurochemistry, Stockholm University, Svante Arrhenius väg 21A, SE-106 91, Stockholm, Sweden
关键词: SCA7;    Polyglutamine;    Oxidative stress;    Neurodegeneration;    NADPH oxidase complex;    Ataxin-7;   
Others  :  1170622
DOI  :  10.1186/1471-2202-13-86
 received in 2012-03-15, accepted in 2012-07-11,  发布年份 2012
PDF
【 摘 要 】

Background

Spinocerebellar ataxia type 7 (SCA7) is one of nine inherited neurodegenerative disorders caused by polyglutamine (polyQ) expansions. Common mechanisms of disease pathogenesis suggested for polyQ disorders include aggregation of the polyQ protein and induction of oxidative stress. However, the exact mechanism(s) of toxicity is still unclear.

Results

In this study we show that expression of polyQ expanded ATXN7 in a novel stable inducible cell model first results in a concomitant increase in ROS levels and aggregation of the disease protein and later cellular toxicity. The increase in ROS could be completely prevented by inhibition of NADPH oxidase (NOX) complexes suggesting that ATXN7 directly or indirectly causes oxidative stress by increasing superoxide anion production from these complexes. Moreover, we could observe that induction of mutant ATXN7 leads to a decrease in the levels of catalase, a key enzyme in detoxifying hydrogen peroxide produced from dismutation of superoxide anions. This could also contribute to the generation of oxidative stress. Most importantly, we found that treatment with a general anti-oxidant or inhibitors of NOX complexes reduced both the aggregation and toxicity of mutant ATXN7. In contrast, ATXN7 aggregation was aggravated by treatments promoting oxidative stress.

Conclusion

Our results demonstrates that oxidative stress contributes to ATXN7 aggregation as well as toxicity and show that anti-oxidants or NOX inhibition can ameliorate mutant ATXN7 toxicity.

【 授权许可】

   
2012 Ajayi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150417022929848.pdf 2111KB PDF download
Figure 6. 46KB Image download
Figure 5. 72KB Image download
Figure 4. 39KB Image download
Figure 3. 32KB Image download
Figure 2. 42KB Image download
Figure 1. 50KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Konigsmark BW, Weiner LP: The olivopontocerebellar atrophies: a review. Medicine (Baltimore) 1970, 49(3):227-241.
  • [2]Martin JJ, Van Regemorter N, Krols L, Brucher JM, de Barsy T, Szliwowski H, Evrard P, Ceuterick C, Tassignon MJ, Smet-Dieleman H, et al.: On an autosomal dominant form of retinal-cerebellar degeneration: an autopsy study of five patients in one family. Acta Neuropathol 1994, 88(4):277-286.
  • [3]David G, Abbas N, Stevanin G, Durr A, Yvert G, Cancel G, Weber C, Imbert G, Saudou F, Antoniou E, et al.: Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 1997, 17(1):65-70.
  • [4]Cancel G, Duyckaerts C, Holmberg M, Zander C, Yvert G, Lebre AS, Ruberg M, Faucheux B, Agid Y, Hirsch E, et al.: Distribution of ataxin-7 in normal human brain and retina. Brain 2000, 123(Pt 12):2519-2530.
  • [5]Jonasson J, Strom AL, Hart P, Brannstrom T, Forsgren L, Holmberg M: Expression of ataxin-7 in CNS and non-CNS tissue of normal and SCA7 individuals. Acta Neuropathol 2002, 104(1):29-37.
  • [6]Lindenberg KS, Yvert G, Muller K, Landwehrmeyer GB: Expression analysis of ataxin-7 mRNA and protein in human brain: evidence for a widespread distribution and focal protein accumulation. Brain Pathol 2000, 10(3):385-394.
  • [7]Helmlinger D, Hardy S, Sasorith S, Klein F, Robert F, Weber C, Miguet L, Potier N, Van-Dorsselaer A, Wurtz JM, et al.: Ataxin-7 is a subunit of GCN5 histone acetyltransferase-containing complexes. Hum Mol Genet 2004, 13(12):1257-1265.
  • [8]Palhan VB, Chen S, Peng GH, Tjernberg A, Gamper AM, Fan Y, Chait BT, La Spada AR, Roeder RG: Polyglutamine-expanded ataxin-7 inhibits STAGA histone acetyltransferase activity to produce retinal degeneration. Proc Natl Acad Sci U S A 2005, 102(24):8472-8477.
  • [9]Katsuno M, Banno H, Suzuki K, Takeuchi Y, Kawashima M, Tanaka F, Adachi H, Sobue G: Molecular genetics and biomarkers of polyglutamine diseases. Curr Mol Med 2008, 8(3):221-234.
  • [10]Strom AL, Forsgren L, Holmberg M: A role for both wild-type and expanded ataxin-7 in transcriptional regulation. Neurobiol Dis 2005, 20(3):646-655.
  • [11]Davies SW, Scherzinger E: Nuclear inclusions in Huntington's disease. Trends Cell Biol 1997, 7(11):422.
  • [12]Hands SL, Wyttenbach A: Neurotoxic protein oligomerisation associated with polyglutamine diseases. Acta Neuropathol 2010, 120(4):419-437.
  • [13]Scherzinger E, Sittler A, Schweiger K, Heiser V, Lurz R, Hasenbank R, Bates GP, Lehrach H, Wanker EE: Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington's disease pathology. Proc Natl Acad Sci U S A 1999, 96(8):4604-4609.
  • [14]Sayre LM, Perry G, Smith MA: Oxidative stress and neurotoxicity. Chem Res Toxicol 2008, 21(1):172-188.
  • [15]Grimm S, Hoehn A, Davies KJ, Grune T: Protein oxidative modifications in the ageing brain: consequence for the onset of neurodegenerative disease. Free Radic Res 2011, 45(1):73-88.
  • [16]Halliwell B: Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 2001, 18(9):685-716.
  • [17]Goswami A, Dikshit P, Mishra A, Mulherkar S, Nukina N, Jana NR: Oxidative stress promotes mutant huntingtin aggregation and mutant huntingtin-dependent cell death by mimicking proteasomal malfunction. Biochem Biophys Res Commun 2006, 342(1):184-190.
  • [18]Kim SJ, Kim TS, Hong S, Rhim H, Kim IY, Kang S: Oxidative stimuli affect polyglutamine aggregation and cell death in human mutant ataxin-1-expressing cells. Neurosci Lett 2003, 348(1):21-24.
  • [19]Miyata R, Hayashi M, Tanuma N, Shioda K, Fukatsu R, Mizutani S: Oxidative stress in neurodegeneration in dentatorubral-pallidoluysian atrophy. J Neurol Sci 2008, 264(1–2):133-139.
  • [20]Reijonen S, Kukkonen JP, Hyrskyluoto A, Kivinen J, Kairisalo M, Takei N, Lindholm D, Korhonen L: Downregulation of NF-kappaB signaling by mutant huntingtin proteins induces oxidative stress and cell death. Cell Mol Life Sci 2010, 67(11):1929-1941.
  • [21]Fatokun AA, Stone TW, Smith RA: Oxidative stress in neurodegeneration and available means of protection. Front Biosci 2008, 13:3288-3311.
  • [22]Bedard K, Krause KH: The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007, 87(1):245-313.
  • [23]Coyle JT, Puttfarcken P: Oxidative stress, glutamate, and neurodegenerative disorders. Science 1993, 262(5134):689-695.
  • [24]Hayes JD, Flanagan JU, Jowsey IR: Glutathione transferases. Annu Rev Pharmacol Toxicol 2005, 45:51-88.
  • [25]Mytilineou C, Kramer BC, Yabut JA: Glutathione depletion and oxidative stress. Parkinsonism Relat Disord 2002, 8(6):385-387.
  • [26]Klug D, Rabani J, Fridovich I: A direct demonstration of the catalytic action of superoxide dismutase through the use of pulse radiolysis. J Biol Chem 1972, 247(15):4839-4842.
  • [27]Rhee SG, Chae HZ, Kim K: Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med 2005, 38(12):1543-1552.
  • [28]Yu X, Ajayi A, Boga NR, Strom AL: Differential Degradation of Full-length and Cleaved Ataxin-7 Fragments in a Novel Stable Inducible SCA7 Model. J Mol Neurosci 2012, 47(2):219-233.
  • [29]Boukhtouche F, Vodjdani G, Jarvis CI, Bakouche J, Staels B, Mallet J, Mariani J, Lemaigre-Dubreuil Y, Brugg B: Human retinoic acid receptor-related orphan receptor alpha1 overexpression protects neurones against oxidative stress-induced apoptosis. J Neurochem 2006, 96(6):1778-1789.
  • [30]Karaer S, Tarhan C, Pekmez M, Hamad I, Arda N, Sarikaya AT: Expression of human A4V mutant Cu, Zn superoxide dismutase in Schizosaccharomyces pombe: investigations of its toxic properties. Biochem Genet 2010, 48(1–2):113-124.
  • [31]Ratovitski T, Corson LB, Strain J, Wong P, Cleveland DW, Culotta VC, Borchelt DR: Variation in the biochemical/biophysical properties of mutant superoxide dismutase 1 enzymes and the rate of disease progression in familial amyotrophic lateral sclerosis kindreds. Hum Mol Genet 1999, 8(8):1451-1460.
  • [32]Drew R, Miners JO: The effects of buthionine sulphoximine (BSO) on glutathione depletion and xenobiotic biotransformation. Biochem Pharmacol 1984, 33(19):2989-2994.
  • [33]Rey FE, Cifuentes ME, Kiarash A, Quinn MT, Pagano PJ: Novel competitive inhibitor of NAD(P)H oxidase assembly attenuates vascular O(2)(−) and systolic blood pressure in mice. Circ Res 2001, 89(5):408-414.
  • [34]Chen CM: Mitochondrial dysfunction, metabolic deficits, and increased oxidative stress in Huntington's disease. Chang Gung Med J 2011, 34(2):135-152.
  • [35]Firdaus WJ, Wyttenbach A, Giuliano P, Kretz-Remy C, Currie RW, Arrigo AP: Huntingtin inclusion bodies are iron-dependent centers of oxidative events. FEBS J 2006, 273(23):5428-5441.
  • [36]Hands S, Sajjad MU, Newton MJ, Wyttenbach A: In Vitro and in Vivo Aggregation of a Fragment of Huntingtin Protein Directly Causes Free Radical Production. J Biol Chem 2011.
  • [37]Puranam KL, Wu G, Strittmatter WJ, Burke JR: Polyglutamine expansion inhibits respiration by increasing reactive oxygen species in isolated mitochondria. Biochem Biophys Res Commun 2006, 341(2):607-613.
  • [38]Solans A, Zambrano A, Rodriguez M, Barrientos A: Cytotoxicity of a mutant huntingtin fragment in yeast involves early alterations in mitochondrial OXPHOS complexes II and III. Hum Mol Genet 2006, 15(20):3063-3081.
  • [39]Bertoni A, Giuliano P, Galgani M, Rotoli D, Ulianich L, Adornetto A, Santillo MR, Porcellini A, Avvedimento VE: Early and Late Events Induced by PolyQ-expanded Proteins: IDENTIFICATION OF A COMMON PATHOGENIC PROPERTY OF POLYQ-EXPANDED PROTEINS. J Biol Chem 2011, 286(6):4727-4741.
  • [40]Ibi M, Katsuyama M, Fan C, Iwata K, Nishinaka T, Yokoyama T, Yabe-Nishimura C: NOX1/NADPH oxidase negatively regulates nerve growth factor-induced neurite outgrowth. Free Radic Biol Med 2006, 40(10):1785-1795.
  • [41]Zelko IN, Mariani TJ, Folz RJ: Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 2002, 33(3):337-349.
  • [42]Winterbourn CC: Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 2008, 4(5):278-286.
  • [43]del Hoyo P, Garcia-Redondo A, de Bustos F, Molina JA, Sayed Y, Alonso-Navarro H, Caballero L, Arenas J, Jimenez-Jimenez FJ: Oxidative stress in skin fibroblasts cultures of patients with Huntington's disease. Neurochem Res 2006, 31(9):1103-1109.
  • [44]Sorolla MA, Reverter-Branchat G, Tamarit J, Ferrer I, Ros J, Cabiscol E: Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radic Biol Med 2008, 45(5):667-678.
  • [45]Ross CA, Poirier MA: Protein aggregation and neurodegenerative disease. Nat Med 2004, 10(Suppl):S10-S17.
  • [46]Shao J, Diamond MI: Polyglutamine diseases: emerging concepts in pathogenesis and therapy. Hum Mol Genet 2007, 16(Spec No. 2):R115-R123.
  • [47]Young JE, Gouw L, Propp S, Sopher BL, Taylor J, Lin A, Hermel E, Logvinova A, Chen SF, Chen S, et al.: Proteolytic cleavage of ataxin-7 by caspase-7 modulates cellular toxicity and transcriptional dysregulation. J Biol Chem 2007, 282(41):30150-30160.
  • [48]Strom AL, Shi P, Zhang F, Gal J, Kilty R, Hayward LJ, Zhu H: Interaction of amyotrophic lateral sclerosis (ALS)-related mutant copper-zinc superoxide dismutase with the dynein-dynactin complex contributes to inclusion formation. J Biol Chem 2008, 283(33):22795-22805.
  文献评价指标  
  下载次数:31次 浏览次数:5次