期刊论文详细信息
BMC Microbiology
VirS, an OmpR/PhoB subfamily response regulator, is required for activation of vapA gene expression in Rhodococcus equi
Shinji Takai1  Shiko Miyazaki1  Hirofumi Hagiuda1  Tatsuya Takeuchi1  Takuya Hirota1  Tsutomu Kakuda1 
[1] Laboratory of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada 034-8628, Aomori, Japan
关键词: VirS;    Rhodococcus equi VapA protein virulence;    Rhodococcus equi;    Opportunistic infections;   
Others  :  1137757
DOI  :  10.1186/s12866-014-0243-1
 received in 2014-05-15, accepted in 2014-09-09,  发布年份 2014
PDF
【 摘 要 】

Background

Rhodococcus equi is an important pulmonary pathogen in foals and in immunocompromised individuals. Virulent R. equi strains carry an 80-90 kb virulence plasmid that expresses the virulence-associated protein A (VapA). VapA expression is regulated by temperature and pH. The LysR-type transcriptional regulator, VirR, is involved in the regulation of the vapA gene. To examine the mechanism underlying transcriptional regulation of vapA, we characterized an R. equi mutant in which another putative transcriptional regulator encoded on the virulence plasmid, VirS, was deleted.

Results

Deletion of virS reduced vapA promoter activity to non-inducible levels. Complementary expression of VirS in the virS deletion mutant restored transcription at the PvapA promoter, even under non-inducing conditions (30°C and pH 8.0). In addition, VirS expression increased PvapA promoter activity in the absence of functional VirR. Further, transcription of the icgA operon containing virS was regulated by pH and temperature in the same manner as vapA.

Conclusions

This study suggests that VirS is required for VapA expression and that regulation of PvapA-promoter activity may be achieved by controlling VirS expression levels.

【 授权许可】

   
2014 Kakuda et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150318000149707.pdf 798KB PDF download
Figure 6. 12KB Image download
Figure 5. 24KB Image download
Figure 4. 44KB Image download
Figure 3. 38KB Image download
Figure 2. 5KB Image download
Figure 1. 20KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Takai S: Epidemiology of Rhodococcus equi infections: a review. Vet Microbiol 1997, 56:167-176.
  • [2]Prescott JF: Rhodococcus equi: an animal and human pathogen. Clin Microbiol Rev 1991, 4:20-34.
  • [3]Takai S, Sasaki Y, Ikeda T, Uchida Y, Tsubaki S, Sekizaki T: Virulence of Rhodococcus equi isolates from patients with and without AIDS. J Clin Microbiol 1994, 32:457-460.
  • [4]Takai S, Imai Y, Fukunaga N, Uchida Y, Kamisawa K, Sasaki Y, Tsubaki S, Sekizaki T: Identification of virulence-associated antigens and plasmids in Rhodococcus equi from patients with AIDS. J Infect Dis 1995, 172:1306-1311.
  • [5]Takai S, Tharavichitkul P, Takarn P, Khantawa B, Tamura M, Tsukamoto A, Takayama S, Yamatoda N, Kimura A, Sasaki Y, Kakuda T, Tsubaki S, Maneekarn N, Sirisanthana T, Kirikae T: Molecular epidemiology of Rhodococcus equi of intermediate virulence isolated from patients with and without acquired immune deficiency syndrome in Chiang Mai, Thailand. J Infect Dis 2003, 188:1717-1723.
  • [6]Takai S, Tharavichitkul P, Sasaki C, Onishi Y, Yamano S, Kakuda T, Tsubaki S, Trinarong C, Rojanasthien S, Sirimalaisuwan A, Tesaprateep T, Maneekarn N, Sirisanthana T, Kirikae T: Identification of virulence-associated antigens and plasmids in Rhodococcus equi from patients with acquired immune deficiency syndrome and prevalence of virulent R. equi in soil collected from domestic animal farms in Chiang Mai, Thailand. Am J Trop Med Hyg 2002, 66:52-55.
  • [7]Takai S, Sekizaki T, Ozawa T, Sugawara T, Watanabe Y, Tsubaki S: Association between a large plasmid and 15- to 17-kilodalton antigens in virulent Rhodococcus equi. Infect Immun 1991, 59:4056-4060.
  • [8]Takai S, Shoda M, Sasaki Y, Tsubaki S, Fortier G, Pronost S, Rahal K, Becu T, Begg A, Browning G, Nicholson VM, Prescott JF: Restriction fragment length polymorphisms of virulence plasmids in Rhodococcus equi. J Clin Microbiol 1999, 37:3417-3420.
  • [9]Takai S, Murata N, Kudo R, Narematsu N, Kakuda T, Sasaki Y, Tsubaki S: Two new variants of the Rhodococcus equi virulence plasmid, 90 kb type III and type IV, recovered from a foal in Japan. Vet Microbiol 2001, 82:373-381.
  • [10]Takai S, Watanabe Y, Ikeda T, Ozawa T, Matsukura S, Tamada Y, Tsubaki S, Sekizaki T: Virulence-associated plasmids in Rhodococcus equi. J Clin Microbiol 1993, 31:1726-1729.
  • [11]Hondalus MK, Mosser DM: Survival and replication of Rhodococcus equi in macrophages. Infect Immun 1994, 62:4167-4175.
  • [12]Wada R, Kamada M, Anzai T, Nakanishi A, Kanemaru T, Takai S, Tsubaki S: Pathogenicity and virulence of Rhodococcus equi in foals following intratracheal challenge. Vet Microbiol 1997, 56:301-312.
  • [13]Giguere S, Hondalus MK, Yager JA, Darrah P, Mosser DM, Prescott JF: Role of the 85-kilobase plasmid and plasmid-encoded virulence-associated protein A in intracellular survival and virulence of Rhodococcus equi. Infect Immun 1999, 67:3548-3557.
  • [14]Toyooka K, Takai S, Kirikae T: Rhodococcus equi can survive a phagolysosomal environment in macrophages by suppressing acidification of the phagolysosome. J Med Microbiol 2005, 54:1007-1015.
  • [15]Sekizaki T, Takai S, Egawa Y, Ikeda T, Ito H, Tsubaki S: Sequence of the Rhodococcus equi gene encoding the virulence-associated 15–17-kDa antigens. Gene 1995, 155:135-136.
  • [16]Jain S, Bloom BR, Hondalus MK: Deletion of vapA encoding Virulence Associated Protein A attenuates the intracellular actinomycete Rhodococcus equi. Mol Microbiol 2003, 50:115-128.
  • [17]Takai S, Iie M, Watanabe Y, Tsubaki S, Sekizaki T: Virulence-associated 15- to 17-kilodalton antigens in Rhodococcus equi: temperature-dependent expression and location of the antigens. Infect Immun 1992, 60:2995-2997.
  • [18]Takai S, Fukunaga N, Kamisawa K, Imai Y, Sasaki Y, Tsubaki S: Expression of virulence-associated antigens of Rhodococcus equi is regulated by temperature and pH. Microbiol Immunol 1996, 40:591-594.
  • [19]Ren J, Prescott JF: Analysis of virulence plasmid gene expression of intra-macrophage and in vitro grown Rhodococcus equi ATCC 33701. Vet Microbiol 2003, 94:167-182.
  • [20]Madarame H, Takai S, Morisawa N, Fujii M, Hidaka D, Tsubaki S, Hasegawa Y: Immunohistochemical detection of virulence-associated antigens of Rhodococcus equi in pulmonary lesions of foals. Vet Pathol 1996, 33:341-343.
  • [21]Russell DA, Byrne GA, O’Connell EP, Boland CA, Meijer WG: The LysR-type transcriptional regulator VirR is required for expression of the virulence gene vapA of Rhodococcus equi ATCC 33701. J Bacteriol 2004, 186:5576-5584.
  • [22]Takai S, Hines SA, Sekizaki T, Nicholson VM, Alperin DA, Osaki M, Takamatsu D, Nakamura M, Suzuki K, Ogino N, Kakuda T, Dan H, Prescott JF: DNA sequence and comparison of virulence plasmids from Rhodococcus equi ATCC 33701 and 103. Infect Immun 2000, 68:6840-6847.
  • [23]Wiesner RS, Hendrixson DR, DiRita VJ: Natural transformation of Campylobacter jejuni requires components of a type II secretion system. J Bacteriol 2003, 185:5408-5418.
  • [24]Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227:680-685.
  • [25]Takai S, Iie M, Kobayashi C, Morishita T, Nishio T, Ishida T, Fujimura T, Sasaki Y, Tsubaki S: Monoclonal antibody specific to virulence-associated 15- to 17-kilodalton antigens of Rhodococcus equi. J Clin Microbiol 1993, 31:2780-2782.
  • [26]Hong Y, Hondalus MK: Site-specific integration of Streptomyces PhiC31 integrase-based vectors in the chromosome of Rhodococcus equi. FEMS Microbiol Lett 2008, 287:63-68.
  • [27]Sekizaki T, Tanoue T, Osaki M, Shimoji Y, Tsubaki S, Takai S: Improved electroporation of Rhodococcus equi. J Vet Med Sci 1998, 60:277-279.
  • [28]van der Geize R, de Jong W, Hessels GI, Grommen AW, Jacobs AA, Dijkhuizen L: A novel method to generate unmarked gene deletions in the intracellular pathogen Rhodococcus equi using 5-fluorocytosine conditional lethality. Nucleic Acids Res 2008, 36:e151.
  • [29]Miller JH: Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1972.
  • [30]Bourret RB, Hess JF, Simon MI: Conserved aspartate residues and phosphorylation in signal transduction by the chemotaxis protein CheY. Proc Natl Acad Sci U S A 1990, 87:41-45.
  • [31]Byrne GA, Russell DA, Chen X, Meijer WG: Transcriptional regulation of the virR operon of the intracellular pathogen Rhodococcus equi. J Bacteriol 2007, 189:5082-5089.
  • [32]Rodríguez-Lázaro D, Lewis DA, Ocampo-Sosa AA, Fogarty U, Makrai L, Navas J, Scortti M, Hernández M, Vázquez-Boland JA: Internally controlled real-time PCR method for quantitative species-specific detection and vapA genotyping of Rhodococcus equi. Appl Environ Microbiol 2006, 72:4256-4263.
  • [33]Djordjevic S, Stock AM: Structural analysis of bacterial chemotaxis proteins: components of a dynamic signaling system. J Struct Biol 1998, 124:189-200.
  • [34]Zundel CJ, Capener DC, McCleary WR: Analysis of the conserved acidic residues in the regulatory domain of PhoB. FEBS Lett 1998, 441:242-246.
  • [35]Lewis RJ, Brannigan JA, Muchová K, Barák I, Wilkinson AJ: Phosphorylated aspartate in the structure of a response regulator protein. J Mol Biol 1999, 294:9-15.
  • [36]Fraser JS, Merlie JP Jr, Echols N, Weisfield SR, Mignot T, Wemmer DE, Zusman DR, Alber T: An atypical receiver domain controls the dynamic polar localization of the Myxococcus xanthus social motility protein FrzS. Mol Microbiol 2007, 65:319-332.
  • [37]Hong E, Lee HM, Ko H, Kim DU, Jeon BY, Jung J, Shin J, Lee SA, Kim Y, Jeon YH, Cheong C, Cho HS, Lee W: Structure of an atypical orphan response regulator protein supports a new phosphorylation-independent regulatory mechanism. J Biol Chem 2007, 282:20667-20675.
  • [38]Schär J, Sickmann A, Beier D: Phosphorylation-independent activity of atypical response regulators of Helicobacter pylori. J Bacteriol 2005, 187:3100-3109.
  文献评价指标  
  下载次数:59次 浏览次数:11次