期刊论文详细信息
BMC Medical Genomics
Gestational tissue transcriptomics in term and preterm human pregnancies: a systematic review and meta-analysis
Antonis Rokas2  Patrick Abbot2  Kriston L. McGary2  William E. Ackerman1  Haley R. Eidem2 
[1] Department of Obstetrics and Gynecology, The Ohio State University, Columbus 43210, OH, USA;Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville 37235, TN, USA
关键词: Meta-analysis;    Idiopathic preterm birth;    Preeclampsia;    Methylation;    microRNA;    Gene expression;    Transcriptomics;    Gestational tissues;    Preterm birth;   
Others  :  1217187
DOI  :  10.1186/s12920-015-0099-8
 received in 2014-12-19, accepted in 2015-05-12,  发布年份 2015
PDF
【 摘 要 】

Background

Preterm birth (PTB), or birth before 37 weeks of gestation, is the leading cause of newborn death worldwide. PTB is a critical area of scientific study not only due to its worldwide toll on human lives and economies, but also due to our limited understanding of its pathogenesis and, therefore, its prevention. This systematic review and meta-analysis synthesizes the landscape of PTB transcriptomics research to further our understanding of the genes and pathways involved in PTB subtypes.

Methods

We evaluated published genome-wide pregnancy studies across gestational tissues and pathologies, including those that focus on PTB, by performing a targeted PubMed MeSH search and systematically reviewing all relevant studies.

Results

Our search yielded 2,361 studies on gestational tissues including placenta, decidua, myometrium, maternal blood, cervix, fetal membranes (chorion and amnion), umbilical cord, fetal blood, and basal plate. Selecting only those original research studies that measured transcription on a genome-wide scale and reported lists of expressed genetic elements identified 93 gene expression, 21 microRNA, and 20 methylation studies. Although 30 % of all PTB cases are due to medical indications, 76 % of the preterm studies focused on them. In contrast, only 18 % of the preterm studies focused on spontaneous onset of labor, which is responsible for 45 % of all PTB cases. Furthermore, only 23 of the 10,993 unique genetic elements reported to be transcriptionally active were recovered 10 or more times in these 134 studies. Meta-analysis of the 93 gene expression studies across 9 distinct gestational tissues and 29 clinical phenotypes showed limited overlap of genes identified as differentially expressed across studies.

Conclusions

Overall, profiles of differentially expressed genes were highly heterogeneous both between as well as within clinical subtypes and tissues as well as between studies of the same clinical subtype and tissue. These results suggest that large gaps still exist in the transcriptomic study of specific clinical subtypes as well in the generation of the transcriptional profile of well-studied clinical subtypes; understanding the complex landscape of prematurity will require large-scale, systematic genome-wide analyses of human gestational tissues on both understudied and well-studied subtypes alike.

【 授权许可】

   
2015 Eidem et al.

【 预 览 】
附件列表
Files Size Format View
20150705020728148.pdf 821KB PDF download
Fig. 7. 77KB Image download
Fig. 6. 23KB Image download
Fig. 5. 24KB Image download
Fig. 4. 17KB Image download
Fig. 3. 36KB Image download
Fig. 2. 17KB Image download
Fig. 1. 37KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

【 参考文献 】
  • [1]Muglia LJ, Katz M: The enigma of spontaneous preterm birth. N Engl J Med 2010, 362:529-35.
  • [2]Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller A-B, Narwal R, et al.: National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. The Lancet 2012, 379:2162-72.
  • [3]Goldenberg RL, Culhane JF, Iams JD, Romero R: Epidemiology and causes of preterm birth. Lancet 2008, 371:75-84.
  • [4]Esplin MS: Overview of spontaneous preterm birth: a complex and multifactorial phenotype. Clin Obstet Gynecol 2014, 57:518-30.
  • [5]Chang HH, Larson J, Blencowe H, Spong CY, Howson CP, Cairns-Smith S, et al.: Preventing preterm births: analysis of trends and potential reductions with interventions in 39 countries with very high human development index. The Lancet 2013, 381:223-34.
  • [6]Plunkett J, Muglia LJ: Genetic contributions to preterm birth: implications from epidemiological and genetic association studies. Ann Med 2008, 40:167-95.
  • [7]Myatt L, Eschenbach DA, Lye SJ, Mesiano S, Murtha AP, Williams SM, et al.: A standardized template for clinical studies in preterm birth. Reprod Sci 2012, 19:474-82.
  • [8]Menon R: Spontaneous preterm birth, a clinical dilemma: etiologic, pathophysiologic and genetic heterogeneities and racial disparity. Acta Obstet Gynecol Scand 2008, 87:590-600.
  • [9]Ananth CV, Vintzileos AM: Epidemiology of preterm birth and its clinical subtypes. J Matern-Fetal Neonatal Med Off J Eur Assoc Perinat Med Fed Asia Ocean Perinat Soc Int Soc Perinat Obstet 2006, 19:773-82.
  • [10]Henderson JJ, McWilliam OA, Newnham JP, Pennell CE: Preterm birth aetiology 2004–2008. Maternal factors associated with three phenotypes: spontaneous preterm labour, preterm pre-labour rupture of membranes and medically indicated preterm birth. J Matern Fetal Neonatal Med 2012, 25:642-7.
  • [11]Moutquin J: Classification and heterogeneity of preterm birth. BJOG Int J Obstet Gynaecol 2003, 110:30-3.
  • [12]Romero R, Dey SK, Fisher SJ: Preterm labor: one syndrome, many causes. Science 2014, 345:760-5.
  • [13]Bezold KY, Karjalainen MK, Hallman M, Teramo K, Muglia LJ: The genomics of preterm birth: from animal models to human studies. Genome Med 2013, 5:34.
  • [14]Lengyel C, Muglia LJ, Pavlicev M: Genetics of Preterm Birth. eLS. 2014:1–13.
  • [15]Iams JD: Preterm birth categories-labels with consequences. Am J Obstet Gynecol 2014, 210:97-8.
  • [16]Arcelli D, Farina A, Cappuzzello C, Bresin A, De Sanctis P, Perolo A, Prandstraller D, Valentini D, Zucchini C, Priori S, Rizzo N: Identification of circulating placental mRNA in maternal blood of pregnancies affected with fetal congenital heart diseases at the second trimester of pregnancy: implications for early molecular screening. Prenat Diagn. 2010;30(3):229-34.
  • [17]Bethin KE, Nagai Y, Sladek R, Asada M, Sadovsky Y, Hudson TJ, et al.: Microarray analysis of uterine gene expression in mouse and human pregnancy. Mol Endocrinol Baltim Md 2003, 17:1454-69.
  • [18]Bollapragada S, Bollopragada S, Youssef R, Jordan F, Greer I, Norman J, et al.: Term labor is associated with a core inflammatory response in human fetal membranes, myometrium, and cervix. Am J Obstet Gynecol 2009, 200:104.
  • [19]Brennan DJ, McGee SF, Rexhepaj E, O’Connor DP, Robson M, O’Herlihy C: Identification of a myometrial molecular profile for dystocic labor. BMC Pregnancy Childbirth 2011, 11:74.
  • [20]Bruchova H, Vasikova a, Merkerova M, Milcova A: Effect of maternal tobacco smoke exposure on the placental transcriptome. Placenta. 2010;31(3):186-91.
  • [21]Buimer M, Keijser R, Jebbink JM, Wehkamp D, van Kampen AHC, Boer K, et al.: Seven placental transcripts characterize HELLP-syndrome. Placenta 2008, 29:444-53.
  • [22]Bukowski R, Hankins GDV, Saade GR, Anderson GD, Thornton S: Labor-associated gene expression in the human uterine fundus, lower segment, and cervix. PLoS Med 2006, 3:e169.
  • [23]Centlow M, Wingren C, Borrebaeck C, Brownstein MJ, Hansson SR: Differential gene expression analysis of placentas with increased vascular resistance and pre-eclampsia using whole-genome microarrays. J Pregnancy 2011, 2011:472354-12.
  • [24]Chaemsaithong P, Madan I, Romero R, Than NG, Tarca AL, Draghici S, et al.: Characterization of the myometrial transcriptome in women with an arrest of dilatation during labor. J Perinat Med 2013, 41:665-81.
  • [25]Chan EC, Fraser S, Yin S, Yeo G, Kwek K, Fairclough RJ, et al.: Human myometrial genes are differentially expressed in labor: a suppression subtractive hybridization study. J Clin Endocrinol Metab 2002, 87:2435-41.
  • [26]Chan Y-W, van den Berg HA, Moore JD, Quenby S, Blanks AM: Assessment of myometrial transcriptome changes associated with spontaneous human labour by high throughput RNA-seq. Exp Physiol 2014, 0:1-15.
  • [27]Chang S-D, Chao A-S, Peng H-H, Chang Y-L, Wang C-N, Cheng P-J, et al.: Analyses of placental gene expression in pregnancy-related hypertensive disorders. Taiwan J Obstet Gynecol 2011, 50:283-91.
  • [28]Charpigny G, Leroy M-J, Breuiller-Fouché M, Tanfin Z, Mhaouty-Kodja S, Robin P, et al.: A functional genomic study to identify differential gene expression in the preterm and term human myometrium. Biol Reprod 2003, 68:2289-96.
  • [29]Chim SSC, Lee WS, Ting YH, Chan OK, Lee SWY, Leung TY: Systematic identification of spontaneous preterm birth-associated RNA transcripts in maternal plasma. PLoS ONE 2012, 7:e34328.
  • [30]Cordeaux Y, Tattersall M, Charnock-Jones DS, Smith GCS: Effects of medroxyprogesterone acetate on gene expression in myometrial explants from pregnant women. J Clin Endocrinol Metab 2010, 95:E437-47.
  • [31]Dunk CE, Roggensack AM, Cox B, Perkins JE, AAsenius F, Keating S, et al.: A distinct microvascular endothelial gene expression pro. Placenta 2012, 33:285-93.
  • [32]Enquobahrie DA, Meller M, Rice K, Psaty BM, Siscovick DS, Williams MA: Differential placental gene expression in preeclampsia. Am J Obstet Gynecol 2008, 199:566.
  • [33]Enquobahrie DA, Williams MA, Qiu C, Meller M, Sorensen TK: Global placental gene expression in gestational diabetes mellitus. Am J Obstet Gynecol 2009, 200:206.
  • [34]Esplin MS, Fausett MB, Peltier MR, Hamblin S, Silver RM, Branch DW, et al.: The use of cDNA microarray to identify differentially expressed labor-associated genes within the human myometrium during labor. Am J Obstet Gynecol 2005, 193:404-13.
  • [35]Gack S, Marme A, Marme F, Wrobel G, Vonderstrass B, Bastert G, et al.: Preeclampsia: increased expression of soluble ADAM 12. J Mol Med Berl Ger 2005, 83:887-96.
  • [36]Haddad R, Tromp G, Kuivaniemi H: Human spontaneous labor without histologic chorioamnionitis is characterized by an acute inflammation gene expression signature. Am J Ldots 2006, 195:394-405.
  • [37]Han YM, Romero R, Kim J-S, Tarca AL, Kim SK, Draghici S, et al.: Region-specific gene expression profiling: novel evidence for biological heterogeneity of the human amnion. Biol Reprod 2008, 79:954-61.
  • [38]Hansson SR, Chen Y, Brodszki J, Chen M, Hernandez-Andrade E, Inman JM, et al.: Gene expression profiling of human placentas from preeclamptic and normotensive pregnancies. Mol Hum Reprod 2006, 12:169-79.
  • [39]Hassan SS, Romero R, Tarca AL, Nhan-Chang C-L, Vaisbuch E, Erez O, et al.: The transcriptome of cervical ripening in human pregnancy before the onset of labor at term: Identification of novel molecular functions involved in this process. J Matern Fetal Neonatal Med 2009, 22:1183-93.
  • [40]Havelock OC, Keller P, Muleba N, Mayhew BA, Casey BM, Rainey WE, et al.: Human myometrial gene expression before and during parturition. Biol Reprod 2005, 72:707-19.
  • [41]Heikkilä A, Tuomisto T, Häkkinen S-K, Keski-Nisula L, Heinonen S, Ylä-Herttuala S: Tumor suppressor and growth regulatory genes are overexpressed in severe early-onset preeclampsia–an array study on case-specific human preeclamptic placental tissue. Acta Obstet Gynecol Scand 2005, 84:679-89.
  • [42]Heng YJ, Pennell CE, Chua HN, Perkins JE, Lye SJ: Whole blood gene expression profile associated with spontaneous preterm birth in women with threatened preterm labor. PLoS ONE 2014, 9:e96901.
  • [43]Hiden U, Maier A, Bilban M, Ghaffari-Tabrizi N, Wadsack C, Lang I, et al.: Insulin control of placental gene expression shifts from mother to foetus over the course of pregnancy. Diabetologia 2006, 49:123-31.
  • [44]Hoegh AM, Borup R, Nielsen FC, Sørensen S, Hviid TVF: Gene expression profiling of placentas affected by pre-eclampsia. J Biomed Biotechnol 2010, 2010:787545-11.
  • [45]Jarvenpaa J, Vuoristo JT, Savolainen E, Ukkola O, Vaskivuo T, Ryynanen M: Altered expression of angiogenesis-related placental genes in pre-eclampsia associated with intrauterine growth restriction. Gynecol Endocrinol Off J Int Soc Gynecol Endocrinol 2007, 23:351-5.
  • [46]Junus K, Centlow M, Wikstrom AK, Larsson I, Hansson SR, Olovsson M: Gene expression profiling of placentae from women with early- and late-onset pre-eclampsia: down-regulation of the angiogenesis-related genes ACVRL1 and EGFL7 in early-onset disease. Mol Hum Reprod 2012, 18:146-55.
  • [47]Kang BY, Tsoi S, Zhu S, Su S, Kay HH: Differential gene expression profiling in HELLP syndrome placentas. Reprod Sci 2008, 15:285-94.
  • [48]Kang JH, Song H, Yoon JA, Park DY, Kim SH, Lee KJ, et al.: Preeclampsia leads to dysregulation of various signaling pathways in placenta. J Hypertens 2011, 29:928-36.
  • [49]Khanjani S, Kandola MK, Lindstrom TM, Sooranna SR, Melchionda M, Lee YS, et al.: NF-κB regulates a cassette of immune/inflammatory genes in human pregnant myometrium at term. J Cell Mol Med 2011, 15:809-24.
  • [50]Kim MJ, Romero R, Kim CJ, Tarca AL, Chhauy S, LaJeunesse C, et al.: Villitis of unknown etiology is associated with a distinct pattern of Chemokine Up-regulation in the feto-maternal and placental compartments: implications for conjoint maternal allograft rejection and maternal anti-fetal graft-versus-host disease. J Immunol 2009, 182:3919-27.
  • [51]Kim J, Zhao K, Jiang P, Lu Z, Wang J, Murray JC, et al.: Transcriptome landscape of the human placenta. BMC Genomics 2012, 13:115.
  • [52]Lapaire O, Grill S, Lalevee S, Kolla V, Hösli I, Hahn S: Microarray screening for novel preeclampsia biomarker candidates. Fetal Diagn Ther 2012, 31:147-53.
  • [53]Lee GSR, Joe YS, Kim SJ, Shin JC: Cytokine-related genes and oxidation-related genes detected in preeclamptic placentas. Arch Gynecol Obstet 2010, 282:363-9.
  • [54]Lee J, Romero R, Chaiworapongsa T, Dong Z, Tarca AL, Xu Y, et al.: Characterization of the fetal blood transcriptome and proteome in maternal anti-fetal rejection: evidence of a distinct and novel type of human fetal systemic inflammatory response. Am J Reprod Immunol 2013, 70:265-84.
  • [55]Li R, Ackerman WE, Summerfield TL, Yu L, Gulati P, Zhang J, et al.: Inflammatory gene regulatory networks in amnion cells following cytokine stimulation: translational systems approach to modeling human parturition. PLoS ONE 2011, 6:e20560.
  • [56]Lian IA, Toft JH, Olsen GD, Langaas M, Bjørge L, Eide IP, et al.: Matrix metalloproteinase 1 in pre-eclampsia and fetal growth restriction: reduced gene expression in decidual tissue and protein expression in extravillous trophoblasts. Placenta 2010, 31:615-20.
  • [57]Lim S, MacIntyre DA, Lee YS, Khanjani S, Terzidou V, Teoh TG, et al.: Nuclear factor kappa B activation occurs in the amnion prior to labour onset and modulates the expression of numerous labour associated genes. PLoS ONE 2012, 7:e34707.
  • [58]Liu Y, Li N, You L, Liu X, Li H, Wang X: HSP70 is associated with endothelial activation in placental vascular diseases. Mol Med Camb Mass 2008, 14:561-6.
  • [59]Løset M, Mundal SB, Johnson MP, Fenstad MH, Freed KA, Lian IA, et al.: A transcriptional profile of the decidua in preeclampsia. Am J Obstet Gynecol 2011, 204:84.
  • [60]Mayor-Lynn K, Toloubeydokhti T, Cruz AC, Chegini N: Expression profile of microRNAs and mRNAs in human placentas from pregnancies complicated by preeclampsia and preterm labor. Reprod Sci Thousand Oaks Calif 2011, 18:46-56.
  • [61]McCarthy C, Cotter FE, McElwaine S, Twomey A, Mooney EE, Ryan F, et al.: Altered gene expression patterns in intrauterine growth restriction: potential role of hypoxia. Am J Obstet Gynecol 2007, 196:70.
  • [62]McMinn J, Wei M, Schupf N, Cusmai J, Johnson EB, Smith AC, et al.: Unbalanced placental expression of imprinted genes in human intrauterine growth restriction. Placenta 2006, 27:540-9.
  • [63]Meng T, Chen H, Sun M, Wang H, Zhao G, Wang X: Identification of differential gene expression profiles in placentas from preeclamptic pregnancies versus normal pregnancies by DNA microarrays. Omics J Integr Biol 2012, 16:301-11.
  • [64]Mittal P, Romero R, Tarca AL, Gonzalez J, Draghici S, Xu Y, et al.: Characterization of the myometrial transcriptome and biological pathways of spontaneous human labor at term. J Perinat Med 2010, 38:617-43.
  • [65]Muehlenbachs A, Fried M, Lachowitzer J, Mutabingwa TK, Duffy PE: Genome-wide expression analysis of placental malaria reveals features of lymphoid neogenesis during chronic infection. J Immunol Baltim Md 1950 2007, 179:557-65.
  • [66]Nhan-Chang CL, Romero R, Tarca AL, Mittal P, Kusanovic JP, Erez O, et al.: Characterization of the transcriptome of chorioamniotic membranes at the site of rupture in spontaneous labor at term. Am J Obstet Gynecol 2010, 202:462.
  • [67]Nishizawa H, Pryor-Koishi K, Kato T, Kowa H, Kurahashi H, Udagawa Y: Microarray analysis of differentially expressed fetal genes in placental tissue derived from early and late onset severe pre-eclampsia. Placenta 2007, 28:487-97.
  • [68]Nishizawa H, Ota S, Suzuki M, Kato T, Sekiya T, Kurahashi H, et al.: Comparative gene expression profiling of placentas from patients with severe pre-eclampsia and unexplained fetal growth restriction. Reprod Biol Endocrinol RBE 2011, 9:107.
  • [69]Ogita K, Kimura T, Nakamura H, Koyama S, Tsujie T, Tomiie M, et al.: Differential expression and localization of decorin in human choriodecidual membrane during preterm and term pregnancy. Am J Reprod Immunol 2004, 51:204-10.
  • [70]Okamoto A, Endo H, Kalionis B, Shinya M, Saito M, Nikaido T, et al.: IGFBP1 and follistatin-like 3 genes are significantly up-regulated in expression profiles of the IUGR placenta. Placenta 2006, 27:317-21.
  • [71]Osei-Kumah A, Smith R, Jurisica I, Caniggia I, Clifton VL: Differences in placental global gene expression in pregnancies complicated by asthma. Placenta 2011, 32:570-8.
  • [72]Peng H-H, Kao C-C, Chang S-D, Chao A-S, Chang Y-L, Wang C-N, et al.: The effects of labor on differential gene expression in parturient women, placentas, and fetuses at term pregnancy. Kaohsiung J Med Sci 2011, 27:494-502.
  • [73]Radaelli T, Varastehpour A, Catalano P, Haugeul-de Mouzon S: Gestational diabetes induces placental genes for chronic stress and inflammatory pathways. Diabetes 2003, 52:2951-8.
  • [74]Rehman KS, Yin S, Mayhew BA. Human myometrial adaptation to pregnancy: cDNA microarray gene expression profiling of myometrium from non-pregnant and pregnant women. Mol Hum Reprod. 2003;9(11):681-700.
  • [75]Reimer T, Koczan D, Gerber B, Richter D, Thiesen HJ, Friese K: Microarray analysis of differentially expressed genes in placental tissue of pre-eclampsia: up-regulation of obesity-related genes. Mol Hum Reprod 2002, 8:674-80.
  • [76]Roh CR, Budhraja V, Kim HS, Nelson DM, Sadovsky Y: Microarray-based identification of differentially expressed genes in hypoxic term human trophoblasts and in placental villi of pregnancies with growth restricted fetuses. Placenta 2005, 26:319-28.
  • [77]Saben J, Zhong Y, McKelvey S, Dajani NK, Andres A, Badger TM, et al.: A comprehensive analysis of the human placenta transcriptome. Placenta 2014, 35:125-31.
  • [78]Shankar R, Johnson MP, Williamson NA, Cullinane F, Purcell AW, Moses EK, et al.: Molecular markers of preterm labor in the choriodecidua. Reprod Sci Thousand Oaks Calif 2010, 17:297-310.
  • [79]Sitras V, Paulssen R, Leirvik J, Vårtun A, Acharya G: Placental gene expression profile in intrauterine growth restriction due to placental insufficiency. Reprod Sci 2009, 16:701-11.
  • [80]Sitras V, Paulssen RH, Grønaas H, Leirvik J, Hanssen TA, Vårtun A, et al.: Differential placental gene expression in severe preeclampsia. Placenta 2009, 30:424-33.
  • [81]Sitras V, Fenton C, Paulssen R, Vårtun Å, Acharya G: Differences in gene expression between first and third trimester human placenta: a microarray study. PLoS ONE 2012, 7:e33294.
  • [82]Soleymanlou N, Jurisica I, Nevo O, Ietta F, Zhang X, Zamudio S, et al.: Molecular evidence of placental hypoxia in preeclampsia. J Clin Endocrinol Metab 2005, 90:4299-308.
  • [83]Sood R, Zehnder JL, Druzin ML, Brown PO: Gene expression patterns in human placenta. Proc Natl Acad Sci U S A 2006, 103:5478-83.
  • [84]Tashima LS, Millar LK: Genes upregulated in human fetal membranes by infection or labor. Obstet Gynecol. 1999;94(3):441-9.
  • [85]Tattersall M, Cordeaux Y, Charnock-Jones DS, Smith GCS: Expression of gastrin-releasing peptide is increased by prolonged stretch of human myometrium, and antagonists of its receptor inhibit contractility. J Physiol 2012, 590:2081-93.
  • [86]Textoris J, Ivorra D, Ben Amara A, Sabatier F, Ménard J-P, Heckenroth H, et al.: Evaluation of current and New biomarkers in severe preeclampsia: a microarray approach reveals theVSIG4 gene as a potential blood biomarker. PLoS ONE 2013, 8:e82638.
  • [87]Tromp G, Kuivaniemi H, Romero R, Chaiworapongsa T, Kim YM, Kim MR, et al.: Genome-wide expression profiling of fetal membranes reveals a deficient expression of proteinase inhibitor 3 in premature rupture of membranes. Am J Obstet Gynecol 2004, 191:1331-8.
  • [88]Tsai S, Hardison NE, James AH, Motsinger-Reif AA, Bischoff SR, Thames BH, et al.: Transcriptional profiling of human placentas from pregnancies complicated by preeclampsia reveals disregulation of sialic acid acetylesterase and immune signalling pathways. Placenta 2011, 32:175-82.
  • [89]Uusküla L, Männik J, Rull K, Minajeva A, Kõks S, Vaas P, et al.: Mid-gestational gene expression profile in placenta and link to pregnancy complications. PLoS ONE 2012, 7:e49248.
  • [90]Várkonyi T, Nagy B, Füle T, Tarca AL, Karászi K, Schönléber J, et al.: Microarray profiling reveals that placental transcriptomes of early-onset HELLP syndrome and preeclampsia are similar. Placenta 2011, 32(Suppl):S21-9.
  • [91]Votavova H, Dostalova Merkerova M, Fejglova K, Vasikova A, Krejcik Z, Pastorkova A, et al.: Transcriptome alterations in maternal and fetal cells induced by tobacco smoke. Placenta 2011, 32:763-70.
  • [92]Weiner CP, Mason CW, Dong Y, Buhimschi IA, Swaan PW, Buhimschi CS: Human effector/initiator gene sets that regulate myometrial contractility during term and preterm labor. Am J Obstet Gynecol 2010, 202:474.
  • [93]Winn VD, Haimov-Kochman R, Paquet AC, Yang YJ, Madhusudhan MS, Gormley M, et al.: Gene expression profiling of the human maternal-fetal interface reveals dramatic changes between midgestation and term. Endocrinology 2007, 148:1059-79.
  • [94]Winn VD, Gormley M, Paquet AC, Kjaer-Sorensen K, Kramer A, Rumer KK, et al.: Severe preeclampsia-related changes in gene expression at the maternal-fetal interface include sialic acid-binding immunoglobulin-like lectin-6 and pappalysin-2. Endocrinology 2009, 150:452-62.
  • [95]Yan YH, Yi P, Zheng YR, Yu LL, Han J, Han X-M, et al.: Screening for preeclampsia pathogenesis related genes. Eur Rev Med Pharmacol Sci 2013, 17:3083-94.
  • [96]Zhang Y, Cui Y, Zhou Z, Sha J, Li Y, Liu J: Altered global gene expressions of human placentae subjected to assisted reproductive technology treatments. Placenta 2010, 31:251-8.
  • [97]Zhao YH, Wang DP, Zhang LL, Zhang F, Wang DM, Zhang WY: Genomic expression profiles of blood and placenta reveal significant immune-related pathways and categories in Chinese women with gestational diabetes mellitus. Diabet Med J Br Diabet Assoc 2011, 28:237-46.
  • [98]Zhou R, Zhu Q, Wang Y, Ren Y, Zhang L, Zhou Y: Genomewide oligonucleotide microarray analysis on placentae of pre-eclamptic pregnancies. Gynecol Obstet Invest 2006, 62:108-14.
  • [99]Zhou Y, Gormley MJ, Hunkapiller NM, Kapidzic M, Stolyarov Y, Feng V, et al.: Reversal of gene dysregulation in cultured cytotrophoblasts reveals possible causes of preeclampsia. J Clin Invest 2013, 123:2862-72.
  • [100]Barbaux S, Gascoin-Lachambre G, Buffat C, Monnier P, Mondon F, Tonanny M-B, et al.: A genome-wide approach reveals novel imprinted genes expressed in the human placenta. Epigenetics Off J DNA Methylation Soc 2012, 7:1079-90.
  • [101]Blair JD, Yuen RKC, Lim BK, McFadden DE, von Dadelszen P, Robinson WP: Widespread DNA hypomethylation at gene enhancer regions in placentas associated with early-onset pre-eclampsia. Mol Hum Reprod 2013, 19:697-708.
  • [102]Blair JD, Langlois S, McFadden DE, Robinson WP: Overlapping DNA methylation profile between placentas with trisomy 16 and early-onset preeclampsia. Placenta 2014, 35:216-22.
  • [103]Chu T, Bunce K, Shaw P, Shridhar V, Althouse A, Hubel C, et al.: Comprehensive analysis of preeclampsia-associated DNA methylation in the placenta. PLoS ONE 2014, 9:e107318.
  • [104]Cruickshank MN, Oshlack A, Theda C, Davis PG, Martino D, Sheehan P, Dai Y, Saffery R, Doyle LW, Craig JM: Analysis of epigenetic changes in survivors of preterm birth reveals the effect of gestational age and evidence for a long term legacy. Gen Med. 2013;5:1–1.
  • [105]Das R, Lee YK, Strogantsev R, Jin S, Lim YC, Ng PY, et al.: DNMT1 and AIM1 imprinting in human placenta revealed through a genome-wide screen for allele-specific DNA methylation. BMC Genomics 2013, 14:1-1.
  • [106]Gordon L, Joo JE, Powell JE, Ollikainen M, Novakovic B, Li X, et al.: Neonatal DNA methylation profile in human twins is specified by a complex interplay between intrauterine environmental and genetic factors, subject to tissue-specific influence. Genome Res 2012, 22:1395-406.
  • [107]Kim SY, Romero R, Tarca AL, Bhatti G, Kim CJ, Lee J, et al.: Methylome of fetal and maternal monocytes and macrophages at the feto-maternal interface. Am J Reprod Immunol 2012, 68:8-27.
  • [108]Kim J, Pitlick MM, Christine PJ, Schaefer AR, Saleme C, Comas B, et al.: Genome-wide analysis of DNA methylation in human amnion. ScientificWorldJournal 2013, 2013:678156-11.
  • [109]Lun FMF, Chiu RWK, Sun K, Leung TY, Jiang P, Chan KCA, et al.: Noninvasive prenatal methylomic analysis by genomewide bisulfite sequencing of maternal plasma DNA. Clin Chem 2013, 59:1583-94.
  • [110]Ruchat S-M, Houde A-A, Voisin G, St-Pierre J, Perron P, Baillargeon J-P, et al.: Gestational diabetes mellitus epigenetically affects genes predominantly involved in metabolic diseases. Epigenetics Off J DNA Methylation Soc 2013, 8:935-43.
  • [111]Schroeder DI, Blair JD, Lott P, Yu HOK, Hong D, Crary F, et al.: The human placenta methylome. PNAS 2013, 110:6037-42.
  • [112]Suter M, Ma J, Harris A, Patterson L, Brown KA, Shope C, et al.: Maternal tobacco use modestly alters correlated epigenome-wide placental DNA methylation and gene expression. Epigenetics Off J DNA Methylation Soc 2011, 6:1284-94.
  • [113]Turan N, Ghalwash MF, Katari S, Coutifaris C, Obradovic Z, Sapienza C: DNA methylation differences at growth related genes correlate with birth weight: a molecular signature linked to developmental origins of adult disease? BMC Med Genomics 2012, 5:10.
  • [114]Yuen RKC, Chen B, Blair JD, Robinson WP, Nelson DM: Hypoxia alters the epigenetic profile in cultured human placental trophoblasts. Epigenetics Off J DNA Methylation Soc 2013, 8:192-202.
  • [115]Choi SY, Yun J, Lee OJ, Han HS, Yeo MK, Lee MA, et al.: MicroRNA expression profiles in placenta with severe preeclampsia using a PNA-based microarray. Placenta 2013, 34:799-804.
  • [116]Elovitz MA, Brown AG, Anton L, Gilstrop M, Heiser L, Bastek J: Distinct cervical microRNA profiles are present in women destined to have a preterm birth. Am J Obstet Gynecol 2014, 210:221.
  • [117]Enquobahrie DA, Abetew DF, Sorensen TK, Willoughby D, Chidambaram K, Williams MA: Placental microRNA expression in pregnancies complicated by preeclampsia. Am J Obstet Gynecol 2011, 204:178.
  • [118]Gu Y, Sun J, Groome LJ, Wang Y: Differential miRNA expression profiles between the first and third trimester human placentas. Am J Physiol Endocrinol Metab 2013, 304:E836-43.
  • [119]Guo L, Yang Q, Lu J, Li H, Ge Q, Gu W, et al.: A comprehensive survey of miRNA repertoire and 3′ addition events in the placentas of patients with pre-eclampsia from high-throughput sequencing. PLoS ONE 2011, 6:e21072.
  • [120]Hassan SS, Romero R, Pineles B, Tarca AL, Montenegro D, Erez O, et al.: MicroRNA expression profiling of the human uterine cervix after term labor and delivery. Am J Obstet Gynecol 2010, 202:80.
  • [121]Higashijima A, Miura K, Mishima H, Kinoshita A, Jo O, Abe S, et al.: Characterization of placenta-specific microRNAs in fetal growth restriction pregnancy. Prenat Diagn 2013, 33:214-22.
  • [122]Hu Y, Li P, Hao S, Liu L, Zhao J, Hou Y: Differential expression of microRNAs in the placentae of Chinese patients with severe pre-eclampsia. Clin Chem Lab Med CCLM FESCC 2009, 47:923-9.
  • [123]Ishibashi O, Ohkuchi A, Ali MM, Kurashina R, Luo S-S, Ishikawa T, et al.: Hydroxysteroid (17-β) dehydrogenase 1 is dysregulated by miR-210 and miR-518c that are aberrantly expressed in preeclamptic placentas: a novel marker for predicting preeclampsia. Hypertension 2012, 59:265-73.
  • [124]Luo SS, Ishibashi O, Ishikawa G, Ishikawa T, Katayama A, Mishima T, et al.: Human villous trophoblasts express and secrete placenta-specific MicroRNAs into maternal circulation via exosomes. Biol Reprod 2009, 81:717-29.
  • [125]Montenegro D, Romero R, Pineles BL, Tarca AL, Kim YM, Draghici S, et al.: Differential expression of microRNAs with progression of gestation and inflammation in the human chorioamniotic membranes. Am J Obstet Gynecol 2007, 197:289.
  • [126]Montenegro D, Romero R, Kim SS, Tarca AL, Draghici S, Kusanovic JP, et al.: Expression patterns of microRNAs in the chorioamniotic membranes: a role for microRNAs in human pregnancy and parturition. J Pathol 2009, 217:113-21.
  • [127]Morales-Prieto DM, Chaiwangyen W, Ospina-Prieto S, Schneider U, Herrmann J, Gruhn B, et al.: MicroRNA expression profiles of trophoblastic cells. Placenta 2012, 33:725-34.
  • [128]Mouillet JF, Chu T, Nelson DM, Mishima T, Sadovsky Y: MiR-205 silences MED1 in hypoxic primary human trophoblasts. FASEB J 2010, 24:2030-9.
  • [129]Noack F, Ribbat-Idel J, Thorns C, Chiriac A, Axt-Fliedner R, Diedrich K, et al.: miRNA expression profiling in formalin-fixed and paraffin-embedded placental tissue samples from pregnancies with severe preeclampsia. J Perinat Med 2011, 39:267-71.
  • [130]Pineles BL, Romero R, Montenegro D, Tarca AL, Han YM, Kim YM, et al.: Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. Am J Obstet Gynecol 2007, 196:261.
  • [131]Wang W, Feng L, Zhang H, Hachy S, Satohisa S, Laurent LC, et al.: Preeclampsia up-regulates angiogenesis-associated MicroRNA ( i.e., miR-17, −20a, and -20b) that target Ephrin-B2 and EPHB4 in human placenta. J Clin Endocrinol Metab 2012, 97:E1051-9.
  • [132]Xu P, Zhao Y, Liu M, Wang Y, Wang H, Li YX, et al.: Variations of MicroRNAs in human placentas and plasma from preeclamptic pregnancy. Hypertension 2014, 63:1276-84.
  • [133]Zhu X, Han T, Sargent IL, Yin G, Yao Y: Differential expression profile of microRNAs in human placentas from preeclamptic pregnancies vs normal pregnancies. Am J Obstet Gynecol 2009, 200:661.
  • [134]Burleigh DW, Kendziorski CM, Choi YJ, Grindle KM, Grendell RL, Magness RR, et al.: Microarray analysis of BeWo and JEG3 trophoblast cell lines: identification of differentially expressed transcripts. Placenta 2007, 28:383-9.
  • [135]Chen H-W, Chen JJW, Tzeng C-R, Li H-N, Chang S-J, Cheng Y-F, et al.: Global analysis of differentially expressed genes in early gestational decidua and chorionic villi using a 9600 human cDNA microarray. Mol Hum Reprod 2002, 8:475-84.
  • [136]Chevillard G, Derjuga A, Devost D, Zingg HH, Blank V: Identification of interleukin-1 regulated genes in uterine smooth muscle cells. Reproduction 2007, 134:811-22.
  • [137]Fukushima K, Murata M, Hachisuga M, Tsukimori K, Seki H, Takeda S, et al.: Gene expression profiles by microarray analysis during Matrigel-induced tube formation in a human extravillous trophoblast cell line: comparison with endothelial cells. Placenta 2008, 29:898-904.
  • [138]Popovici RM, Betzler NK, Krause MS, Luo M, Jauckus J, Germeyer A, et al.: Gene expression profiling of human endometrial-trophoblast interaction in a coculture model. Endocrinology 2006, 147:5662-75.
  • [139]Soloff MS, Jeng YJ, Izban MG, Sinha M, Luxon BA, Stamnes SJ, et al.: Effects of progesterone treatment on expression of genes involved in uterine quiescence. Reprod Sci Thousand Oaks Calif 2011, 18:781-97.
  • [140]Brou L, Almli LM, Pearce BD, Bhat G, Drobek CO, Fortunato S, et al.: Dysregulated biomarkers induce distinct pathways in preterm birth. BJOG Int J Obstet Gynaecol 2012, 119:458-73.
  • [141]Conde-Agudelo A, Papageorghiou A, Kennedy S, Villar J: Novel biomarkers for the prediction of the spontaneous preterm birth phenotype: a systematic review and meta-analysis: novel biomarkers to predict spontaneous preterm birth. BJOG Int J Obstet Gynaecol 2011, 118:1042-54.
  • [142]Kacerovsky M, Lenco J, Musilova I, Tambor V, Lamont R, Torloni MR, et al.: Proteomic biomarkers for spontaneous preterm birth: a systematic review of the literature. Reprod Sci 2014, 2014(21):283-95.
  • [143]Menon R, Torloni MR, Voltolini C, Torricelli M, Merialdi M, Betran AP, et al.: Biomarkers of spontaneous preterm birth: an overview of the literature in the last four decades. Reprod Sci 2011, 18:1046-70.
  • [144]Manuck TA, Esplin MS, Biggio J, Bukowski R, Parry S, Zhang H, et al.: The phenotype of spontaneous preterm birth: application of a clinical phenotyping tool. Am J Obstet Gynecol 2015, 212:487.
  • [145]Hughes DA, Kircher M, He Z, Guo S, Fairbrother GL, Moreno CS, Khaitovich P, Stoneking M: Evaluating intra- and inter-individual variation in the human placental transcriptome. Genome Biol 2015, 16:54.
  • [146]Moher D, Liberati A, Tetzlaff J, Altman DG: PRISMA Group: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009, 6:e1000097.
  • [147]Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al.: Circos: an information aesthetic for comparative genomics. Genome Res 2009, 19:1639-45.
  • [148]Wickham H: Ggplot2: Elegant Graphics for Data Analysis. Springer, New York; 2009.
  文献评价指标  
  下载次数:9次 浏览次数:0次