BMC Musculoskeletal Disorders | |
Connexin43 enhances the expression of osteoarthritis-associated genes in synovial fibroblasts in culture | |
Joseph P Stains1  Richard J Chen1  Eric R Eidelman1  Atum M Buo1  Corinne Niger1  Aditi Gupta1  | |
[1] Department of Orthopaedics, University of Maryland School of Medicine, 100 Penn Street, Allied Health Building, Room 540E, Baltimore, MD 21201, USA | |
关键词: Cytokines; Osteoarthritis; RelA; NFκB; Signal transduction; Gap junction; Connexin; Synovial fibroblasts; | |
Others : 1090741 DOI : 10.1186/1471-2474-15-425 |
|
received in 2014-09-23, accepted in 2014-11-25, 发布年份 2014 | |
【 摘 要 】
Background
Recent work has shown that the gap junction protein connexin43 (Cx43) is upregulated in cells of the joint during osteoarthritis (OA). Here we examined if the OA-associated increase in Cx43 expression impacts the function of synovial fibroblasts by contributing to the production of catabolic and inflammatory factors that exacerbate joint destruction in arthritic disease.
Methods
Using rabbit and human synovial fibroblast cell lines, we examined the effects of Cx43 overexpression and Cx43 siRNA-mediated knockdown on the gene expression of OA-associated matrix metalloproteinases (MMP1 and MMP13), aggrecanases (ADAMTS4 and ADAMTS5), and inflammatory factors (IL1, IL6 and PTGS2) by quantitative real time RT-PCR. We examined collagenase activity in conditioned media of cultured synovial cells following Cx43 overexpression. Lastly, we assessed the interplay between Cx43 and the NFκB cascade by western blotting and gene expression studies.
Results
Increasing Cx43 expression enhanced the gene expression of MMP1, MMP13, ADAMTS4, ADAMTS5, IL1, IL6 and PTGS2 and increased the secretion of collagenases into conditioned media of cultured synovial fibroblasts. Conversely, knockdown of Cx43 decreased expression of many of these catabolic and inflammatory genes. Modulation of Cx43 expression altered the phosphorylation of the NFκB subunit, p65, and inhibition of NFκB with chemical inhibitors blocked the effects of increased Cx43 expression on the mRNA levels of a subset of these catabolic and inflammatory genes.
Conclusions
Increasing or decreasing Cx43 expression alone was sufficient to alter the levels of catabolic and inflammatory genes expressed by synovial cells. The NFκB cascade mediated the effect of Cx43 on the expression of a subset of these OA-associated genes. As such, Cx43 may be involved in joint pathology during OA, and targeting Cx43 expression or function may be a viable therapeutic strategy to attenuate the catabolic and inflammatory environment of the joint during OA.
【 授权许可】
2014 Gupta et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150128163031283.pdf | 1075KB | download | |
Figure 6. | 75KB | Image | download |
Figure 5. | 40KB | Image | download |
Figure 4. | 52KB | Image | download |
Figure 3. | 55KB | Image | download |
Figure 2. | 33KB | Image | download |
Figure 1. | 49KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Loeser RF, Goldring SR, Scanzello CR, Goldring MB: Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 2012, 64(6):1697-1707.
- [2]Benito MJ, Veale DJ, FitzGerald O, van den Berg WB, Bresnihan B: Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis 2005, 64(9):1263-1267.
- [3]van den Berg WB: The role of cytokines and growth factors in cartilage destruction in osteoarthritis and rheumatoid arthritis. Z Rheumatol 1999, 58(3):136-141.
- [4]Chevalier X: Upregulation of enzymatic activity by interleukin-1 in osteoarthritis. Biomed Pharmacother 1997, 51(2):58-62.
- [5]Pelletier JP, Martel-Pelletier J, Abramson SB: Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets. Arthritis Rheum 2001, 44(6):1237-1247.
- [6]Donahue HJ, Guilak F, Vander Molen MA, McLeod KJ, Rubin CT, Grande DA, Brink PR: Chondrocytes isolated from mature articular cartilage retain the capacity to form functional gap junctions. J Bone Miner Res 1995, 10(9):1359-1364.
- [7]Stains JP, Civitelli R: Gap junctions in skeletal development and function. Biochim Biophys Acta 2005, 1719(1–2):69-81.
- [8]Knight MM, McGlashan SR, Garcia M, Jensen CG, Poole CA: Articular chondrocytes express connexin 43 hemichannels and P2 receptors - a putative mechanoreceptor complex involving the primary cilium? J Anat 2009, 214(2):275-283.
- [9]Chi SS, Rattner JB, Sciore P, Boorman R, Lo IK: Gap junctions of the medial collateral ligament: structure, distribution, associations and function. J Anat 2005, 207(2):145-154.
- [10]Schwab W, Hofer A, Kasper M: Immunohistochemical distribution of connexin 43 in the cartilage of rats and mice. Histochem J 1998, 30(6):413-419.
- [11]Kolomytkin OV, Marino AA, Sadasivan KK, Meek WD, Wolf RE, Hall V, McCarthy KJ, Albright JA: Gap junctions in human synovial cells and tissue. J Cell Physiol 2000, 184(1):110-117.
- [12]Hellio Le Graverand MP, Sciore P, Eggerer J, Rattner JP, Vignon E, Barclay L, Hart DA, Rattner JB: Formation and phenotype of cell clusters in osteoarthritic meniscus. Arthritis Rheum 2001, 44(8):1808-1818.
- [13]Mayan MD, Carpintero-Fernandez P, Gago-Fuentes R, Martinez-de-Ilarduya O, Wang HZ, Valiunas V, Brink P, Blanco FJ: Human articular chondrocytes express multiple gap junction proteins: differential expression of connexins in normal and osteoarthritic cartilage. Am J Pathol 2013, 182(4):1337-1346.
- [14]Chi SS, Rattner JB, Matyas JR: Communication between paired chondrocytes in the superficial zone of articular cartilage. J Anat 2004, 205(5):363-370.
- [15]Mayan MD, Gago-Fuentes R, Carpintero-Fernandez P, Fernandez-Puente P, Filgueira-Fernandez P, Goyanes N, Valiunas V, Brink PR, Goldberg GS, Blanco FJ: Articular chondrocyte network mediated by gap junctions: role in metabolic cartilage homeostasis. Ann Rheum Dis 2013. [Epub ahead of print]
- [16]Spray DC, Ye ZC, Ransom BR: Functional connexin “hemichannels”: a critical appraisal. Glia 2006, 54(7):758-773.
- [17]Saez JC, Retamal MA, Basilio D, Bukauskas FF, Bennett MV: Connexin-based gap junction hemichannels: gating mechanisms. Biochim Biophys Acta 2005, 1711(2):215-224.
- [18]Kar R, Batra N, Riquelme MA, Jiang JX: Biological role of connexin intercellular channels and hemichannels. Arch Biochem Biophys 2012, 524(1):2-15.
- [19]Batra N, Kar R, Jiang JX: Gap junctions and hemichannels in signal transmission, function and development of bone. Biochim Biophys Acta 2012, 1818(8):1909-1918.
- [20]Batra N, Burra S, Siller-Jackson AJ, Gu S, Xia X, Weber GF, DeSimone D, Bonewald LF, Lafer EM, Sprague E, Schwartz MA, Jiang JX: Mechanical stress-activated integrin alpha5beta1 induces opening of connexin 43 hemichannels. Proc Natl Acad Sci U S A 2012, 109(9):3359-3364.
- [21]Buo AM, Stains JP: Gap junctional regulation of signal transduction in bone cells. FEBS Lett 2014, 588(8):1315-1321.
- [22]Marino AA, Waddell DD, Kolomytkin OV, Meek WD, Wolf R, Sadasivan KK, Albright JA: Increased intercellular communication through gap junctions may contribute to progression of osteoarthritis. Clin Orthop Relat Res 2004, 422:224-232.
- [23]Kolomytkin OV, Marino AA, Waddell DD, Mathis JM, Wolf RE, Sadasivan KK, Albright JA: IL-1beta-induced production of metalloproteinases by synovial cells depends on gap junction conductance. Am J Physiol Cell Physiol 2002, 282(6):C1254-C1260.
- [24]Niger C, Howell FD, Stains JP: Interleukin-1beta increases gap junctional communication among synovial fibroblasts via the extracellular-signal-regulated kinase pathway. Biol Cell 2010, 102(1):37-49.
- [25]Tonon R, D’Andrea P: The functional expression of connexin 43 in articular chondrocytes is increased by interleukin 1beta: evidence for a Ca2 + −dependent mechanism. Biorheology 2002, 39(1–2):153-160.
- [26]Tonon R, D’Andrea P: Interleukin-1beta increases the functional expression of connexin 43 in articular chondrocytes: evidence for a Ca2 + −dependent mechanism. J Bone Miner Res 2000, 15(9):1669-1677.
- [27]Plotkin LI, Bellido T: Beyond gap junctions: connexin43 and bone cell signaling. Bone 2013, 52(1):157-166.
- [28]Loiselle AE, Jiang JX, Donahue HJ: Gap junction and hemichannel functions in osteocytes. Bone 2013, 54(2):205-212.
- [29]Jordan M, Schallhorn A, Wurm FM: Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res 1996, 24(4):596-601.
- [30]Beyer EC, Paul DL, Goodenough DA: Connexin43: a protein from rat heart homologous to a gap junction protein from liver. J Cell Biol 1987, 105(6 Pt 1):2621-2629.
- [31]Fuhlbrigge RC, Fine SM, Unanue ER, Chaplin DD: Expression of membrane interleukin 1 by fibroblasts transfected with murine pro-interleukin 1 alpha cDNA. Proc Natl Acad Sci U S A 1988, 85(15):5649-5653.
- [32]Niger C, Luciotti MA, Buo AM, Hebert C, Ma V, Stains JP: The regulation of Runx2 by FGF2 and connexin43 requires the inositol polyphosphate/protein kinase Cdelta cascade. J Bone Miner Res 2013, 28(6):1468-1477.
- [33]Niger C, Buo AM, Hebert C, Duggan BT, Williams MS, Stains JP: ERK acts in parallel to PKCdelta to mediate the connexin43-dependent potentiation of Runx2 activity by FGF2 in MC3T3 osteoblasts. Am J Physiol Cell Physiol 2012, 302(7):C1035-C1044.
- [34]Yamazaki T, Yokoyama T, Akatsu H, Tukiyama T, Tokiwa T: Phenotypic characterization of a human synovial sarcoma cell line, SW982, and its response to dexamethasone. In Vitro Cell Dev Biol Anim 2003, 39(8–9):337-339.
- [35]Kim KO, Park SY, Han CW, Chung HK, Yoo DH, Han JS: Effect of sildenafil citrate on interleukin-1beta-induced nitric oxide synthesis and iNOS expression in SW982 cells. Exp Mol Med 2008, 40(3):286-293.
- [36]Tsuchida S, Arai Y, Kishida T, Takahashi KA, Honjo K, Terauchi R, Inoue H, Oda R, Mazda O, Kubo T: Silencing the expression of connexin 43 decreases inflammation and joint destruction in experimental arthritis. J Orthop Res 2013, 31(4):525-530.
- [37]Hebert C, Stains JP: An intact connexin43 is required to enhance signaling and gene expression in osteoblast-like cells. J Cell Biochem 2013, 114(11):2542-2550.
- [38]Loiselle AE, Lloyd SA, Paul EM, Lewis GS, Donahue HJ: Inhibition of GSK-3beta rescues the impairments in bone formation and mechanical properties associated with fracture healing in osteoblast selective connexin 43 deficient mice. PLoS One 2013, 8(11):e81399.
- [39]Bivi N, Pacheco-Costa R, Brun LR, Murphy TR, Farlow NR, Robling AG, Bellido T, Plotkin LI: Absence of Cx43 selectively from osteocytes enhances responsiveness to mechanical force in mice. J Orthop Res 2013, 31(7):1075-1081.
- [40]Bivi N, Lezcano V, Romanello M, Bellido T, Plotkin LI: Connexin43 interacts with betaarrestin: a pre-requisite for osteoblast survival induced by parathyroid hormone. J Cell Biochem 2011, 112(10):2920-2930.
- [41]D’Andrea P, Calabrese A, Capozzi I, Grandolfo M, Tonon R, Vittur F: Intercellular Ca2+ waves in mechanically stimulated articular chondrocytes. Biorheology 2000, 37(1–2):75-83.
- [42]Grandolfo M, Calabrese A, D’Andrea P: Mechanism of mechanically induced intercellular calcium waves in rabbit articular chondrocytes and in HIG-82 synovial cells. J Bone Miner Res 1998, 13(3):443-453.
- [43]Roman-Blas JA, Jimenez SA: NF-kappaB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage 2006, 14(9):839-848.
- [44]Marcu KB, Otero M, Olivotto E, Borzi RM, Goldring MB: NF-kappaB signaling: multiple angles to target OA. Curr Drug Targets 2010, 11(5):599-613.
- [45]Kameritsch P, Pogoda K, Pohl U: Channel-independent influence of connexin 43 on cell migration. Biochim Biophys Acta 2012, 1818(8):1993-2001.
- [46]Vinken M, Decrock E, Leybaert L, Bultynck G, Himpens B, Vanhaecke T, Rogiers V: Non-channel functions of connexins in cell growth and cell death. Biochim Biophys Acta 2012, 1818(8):2002-2008.
- [47]Herve JC, Derangeon M, Sarrouilhe D, Giepmans BN, Bourmeyster N: Gap junctional channels are parts of multiprotein complexes. Biochim Biophys Acta 2012, 1818(8):1844-1865.
- [48]Lima F, Niger C, Hebert C, Stains JP: Connexin43 potentiates osteoblast responsiveness to fibroblast growth factor 2 via a protein kinase C-delta/Runx2-dependent mechanism. Mol Biol Cell 2009, 20(11):2697-2708.
- [49]Im HJ, Muddasani P, Natarajan V, Schmid TM, Block JA, Davis F, van Wijnen AJ, Loeser RF: Basic fibroblast growth factor stimulates matrix metalloproteinase-13 via the molecular cross-talk between the mitogen-activated protein kinases and protein kinase Cdelta pathways in human adult articular chondrocytes. J Biol Chem 2007, 282(15):11110-11121.
- [50]Wang X, Manner PA, Horner A, Shum L, Tuan RS, Nuckolls GH: Regulation of MMP-13 expression by RUNX2 and FGF2 in osteoarthritic cartilage. Osteoarthritis Cartilage 2004, 12(12):963-973.
- [51]Garcia M, Knight MM: Cyclic loading opens hemichannels to release ATP as part of a chondrocyte mechanotransduction pathway. J Orthop Res 2010, 28(4):510-515.
- [52]Zhang J, Zhang H, Zhang M, Qiu Z, Wu Y, Callaway DA, Jiang JX, Lu L, Jing L, Yang T, Wang MQ: Connexin43 hemichannels mediate small molecule exchange between chondrocytes and matrix in biomechanically-stimulated temporomandibular joint cartilage. Osteoarthritis Cartilage 2014, 22(6):822-830.
- [53]Plotkin LI: Connexin 43 hemichannels and intracellular signaling in bone cells. Front Physiol 2014, 5:131.
- [54]Siller-Jackson AJ, Burra S, Gu S, Xia X, Bonewald LF, Sprague E, Jiang JX: Adaptation of connexin 43-hemichannel prostaglandin release to mechanical loading. J Biol Chem 2008, 283(39):26374-26382.
- [55]Cherian PP, Siller-Jackson AJ, Gu S, Wang X, Bonewald LF, Sprague E, Jiang JX: Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell 2005, 16(7):3100-3106.