期刊论文详细信息
BMC Systems Biology
Levels of pro-apoptotic regulator Bad and anti-apoptotic regulator Bcl-xL determine the type of the apoptotic logic gate
Tomasz Lipniacki1  Marek Kochańczyk2  Beata Hat2  Marta N Bogdał3 
[1] Department of Statistics, Rice University, Houston, TX 77025, USA;Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland;Department of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw 02-097, Poland
关键词: Ordinary differential equations;    Boolean logic;    Bistability;    Bcl-2 family;    Signaling pathway;    Cell survival;    Apoptosis;   
Others  :  1142472
DOI  :  10.1186/1752-0509-7-67
 received in 2013-03-21, accepted in 2013-07-11,  发布年份 2013
PDF
【 摘 要 】

Background

Apoptosis is a tightly regulated process: cellular survive-or-die decisions cannot be accidental and must be unambiguous. Since the suicide program may be initiated in response to numerous stress stimuli, signals transmitted through a number of checkpoints have to be eventually integrated.

Results

In order to analyze possible mechanisms of the integration of multiple pro-apoptotic signals, we constructed a simple model of the Bcl-2 family regulatory module. The module collects upstream signals and processes them into life-or-death decisions by employing interactions between proteins from three subgroups of the Bcl-2 family: pro-apoptotic multidomain effectors, pro-survival multidomain restrainers, and pro-apoptotic single domain BH3-only proteins. Although the model is based on ordinary differential equations (ODEs), it demonstrates that the Bcl-2 family module behaves akin to a Boolean logic gate of the type dependent on levels of BH3-only proteins (represented by Bad) and restrainers (represented by Bcl-xL). A low level of pro-apoptotic Bad or a high level of pro-survival Bcl-xL implies gate AND, which allows for the initiation of apoptosis only when two stress stimuli are simultaneously present: the rise of the p53 killer level and dephosphorylation of kinase Akt. In turn, a high level of Bad or a low level of Bcl-xL implies gate OR, for which any of these stimuli suffices for apoptosis.

Conclusions

Our study sheds light on possible signal integration mechanisms in cells, and spans a bridge between modeling approaches based on ODEs and on Boolean logic. In the proposed scheme, logic gates switching results from the change of relative abundances of interacting proteins in response to signals and involves system bistability. Consequently, the regulatory system may process two analogous inputs into a digital survive-or-die decision.

【 授权许可】

   
2013 Bogdał et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328065603620.pdf 3189KB PDF download
Figure 10. 150KB Image download
Figure 1. 68KB Image download
Figure 8. 60KB Image download
20150327054731812.pdf 1123KB PDF download
Figure 6. 63KB Image download
Figure 5. 60KB Image download
Figure 4. 60KB Image download
Figure 3. 34KB Image download
Figure 2. 38KB Image download
Figure 1. 19KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 8.

Figure 1.

Figure 10.

【 参考文献 】
  • [1]Elmore S: Apoptosis: a review of programmed cell death. Toxicol Pathol 2007, 35(4):495-516. http://dx.doi.org/10.1080/01926230701320337 webcite
  • [2]Norbury CJ, Hickson ID: Cellular responses to DNA damage. Annu Rev Pharmacol Toxicol 2001, 41:367-401. http://dx.doi.org/10.1146/annurev.pharmtox.41.1.367 webcite
  • [3]Thompson CB: Apoptosis in the pathogenesis and treatment of disease. Science 1995, 267(5203):1456-1462.
  • [4]Reed JC: Dysregulation of apoptosis in cancer. J Clin Oncol 1999, 17(9):2941-2941. http://jco.ascopubs.org/content/17/9/2941.short webcite
  • [5]Mattson MP: Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 2000, 1(2):120-129. http://dx.doi.org/10.1038/35040009 webcite
  • [6]Danial NN, Korsmeyer SJ: Cell death: critical control points. Cell 2004, 116(2):205-219.
  • [7]Lowe SW, Cepero E, Evan G: Intrinsic tumour suppression. Nature 2004, 432(7015):307-315. http://dx.doi.org/10.1038/nature03098 webcite
  • [8]Cohen GM: Caspases: the executioners of apoptosis. Biochem J 1997, 326(Pt 1):1-16.
  • [9]Thornberry NA, Lazebnik Y: Caspases: enemies within. Science 1998, 281(5381):1312-1316.
  • [10]Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X: Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997, 91(4):479-489.
  • [11]Slee EA, Adrain C, Martin SJ: Serial killers: ordering caspase activation events in apoptosis. Cell Death Differ 1999, 6(11):1067-1074. http://dx.doi.org/10.1038/sj.cdd.4400601 webcite
  • [12]Inoue S, Browne G, Melino G, Cohen GM: Ordering of caspases in cells undergoing apoptosis by the intrinsic pathway. Cell Death Differ 2009, 16(7):1053-1061. http://dx.doi.org/10.1038/cdd.2009.29 webcite
  • [13]Fischer U, Jänicke RU, Schulze-Osthoff K: Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ 2003, 10:76-100. http://dx.doi.org/10.1038/sj.cdd.4401160 webcite
  • [14]Kirsch DG, Doseff A, Chau BN, Lim DS, de Souza-Pinto NC, Hansford R, Kastan MB, Lazebnik YA, Hardwick JM: Caspase-3-dependent cleavage of Bcl-2 promotes release of cytochrome c. J Biol Chem 1999, 274(30):21155-21161.
  • [15]Rehm M, Dussmann H, Janicke RU, Tavare JM, Kogel D, Prehn JHM: Single-cell fluorescence resonance energy transfer analysis demonstrates that caspase activation during apoptosis is a rapid process. Role of caspase-3. J Biol Chem 2002, 277(27):24506-24514. http://dx.doi.org/10.1074/jbc.M110789200 webcite
  • [16]Thorburn A: Death receptor-induced cell killing. Cell Signal 2004, 16(2):139-144.
  • [17]Guicciardi ME, Gores GJ: Life and death by death receptors. FASEB J 2009, 23(6):1625-1637. http://dx.doi.org/10.1096/fj.08-111005 webcite
  • [18]Danial NN: BCL-2 family proteins: critical checkpoints of apoptotic cell death. Clin Cancer Res 2007, 13(24):7254-7263. http://dx.doi.org/10.1158/1078-0432.CCR-07-1598 webcite
  • [19]Adams JM, Cory S: The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 2007, 26(9):1324-1337. http://dx.doi.org/10.1038/sj.onc.1210220 webcite
  • [20]Antonsson B, Conti F, Ciavatta A, Montessuit S, Lewis S, Martinou I, Bernasconi L, Bernard A, Mermod JJ, Mazzei G, Maundrell K, Gambale F, Sadoul R, Martinou JC: Inhibition of Bax channel-forming activity by Bcl-2. Science 1997, 277(5324):370-372.
  • [21]Shimizu S, Narita M, Tsujimoto Y: Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 1999, 399(6735):483-487. http://dx.doi.org/10.1038/20959 webcite
  • [22]Miyashita T, Reed JC: Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995, 80(2):293-299.
  • [23]Graupner V, Alexander E, Overkamp T, Rothfuss O, Laurenzi VD, Gillissen BF, Daniel PT, Schulze-Osthoff K, Essmann F: Differential regulation of the proapoptotic multidomain protein Bak by p53 and p73 at the promoter level. Cell Death Differ 2011, 18(7):1130-1139. http://dx.doi.org/10.1038/cdd.2010.179 webcite
  • [24]Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ: Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 2001, 292(5517):727-730. http://dx.doi.org/10.1126/science.1059108 webcite
  • [25]Zong WX, Lindsten T, Ross AJ, MacGregor GR, Thompson CB: BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev 2001, 15(12):1481-1486. http://dx.doi.org/10.1101/gad.897601 webcite
  • [26]Walensky LD, Pitter K, Morash J, Oh KJ, Barbuto S, Fisher J, Smith E, Verdine GL, Korsmeyer SJ: A stapled BID BH3 helix directly binds and activates BAX. Mol Cell 2006, 24(2):199-210. http://dx.doi.org/10.1016/j.molcel.2006.08.020 webcite
  • [27]Kim H, Tu HC, Ren D, Takeuchi O, Jeffers JR, Zambetti GP, Hsieh JJD, Cheng EHY: Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol Cell 2009, 36(3):487-499. http://dx.doi.org/10.1016/j.molcel.2009.09.030 webcite
  • [28]Finucane DM, Bossy-Wetzel E, Waterhouse NJ, Cotter TG, Green DR: Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J Biol Chem 1999, 274(4):2225-2233.
  • [29]Ruffolo SC, Shore GC: BCL-2 selectively interacts with the BID-induced open conformer of BAK, inhibiting BAK auto-oligomerization. J Biol Chem 2003, 278(27):25039-25045. http://dx.doi.org/10.1074/jbc.M302930200 webcite
  • [30]Certo M, Moore VDG, Nishino M, Wei G, Korsmeyer S, Armstrong SA, Letai A: Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 2006, 9(5):351-365. http://dx.doi.org/10.1016/j.ccr.2006.03.027 webcite
  • [31]Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI, Adams JM, Huang DCS: Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 2005, 19(11):1294-1305. http://dx.doi.org/10.1101/gad.1304105 webcite
  • [32]Edlich F, Banerjee S, Suzuki M, Cleland MM, Arnoult D, Wang C, Neutzner A, Tjandra N, Youle RJ: Bcl-xL retrotranslocates Bax from the mitochondria into the cytosol. Cell 2011, 145:104-116. http://dx.doi.org/10.1016/j.cell.2011.02.034 webcite
  • [33]Todt F, Cakir Z, Reichenbach F, Youle RJ, Edlich F: The C-terminal helix of Bcl-xL mediates Bax retrotranslocation from the mitochondria. Cell Death Differ 2013, 20(2):333-342. http://dx.doi.org/10.1038/cdd.2012.131 webcite
  • [34]Cartron PF, Gallenne T, Bougras G, Gautier F, Manero F, Vusio P, Meflah K, Vallette FM, Juin P: The first alpha helix of Bax plays a necessary role in its ligand-induced activation by the BH3-only proteins Bid and PUMA. Mol Cell 2004, 16(5):807-818. http://dx.doi.org/10.1016/j.molcel.2004.10.028 webcite
  • [35]Czabotar PE, Westphal D, Dewson G, Ma S, Hockings C, Fairlie WD, Lee EF, Yao S, Robin AY, Smith BJ, Huang DCS, Kluck RM, Adams JM, Colman PM: Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell 2013, 152(3):519-531. http://dx.doi.org/10.1016/j.cell.2012.12.031 webcite
  • [36]Willis SN, Fletcher JI, Kaufmann T, van Delft MF, Chen L, Czabotar PE, Ierino H, Lee EF, Fairlie WD, Bouillet P, Strasser A, Kluck RM, Adams JM, Huang DCS: Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 2007, 315(5813):856-859. http://dx.doi.org/10.1126/science.1133289 webcite
  • [37]Fletcher JI, Meusburger S, Hawkins CJ, Riglar DT, Lee EF, Fairlie WD, Huang DCS, Adams JM: Apoptosis is triggered when prosurvival Bcl-2 proteins cannot restrain Bax. Proc Natl Acad Sci USA 2008, 105(47):18081-18087. http://dx.doi.org/10.1073/pnas.0808691105 webcite
  • [38]Czabotar PE, Lee EF, Thompson GV, Wardak AZ, Fairlie WD, Colman PM: Mutation to Bax beyond the BH3 domain disrupts interactions with pro-survival proteins and promotes apoptosis. J Biol Chem 2011, 286(9):7123-7131. http://dx.doi.org/10.1074/jbc.M110.161281 webcite
  • [39]Ku B, Liang C, Jung JU, Oh BH: Evidence that inhibition of BAX activation by BCL-2 involves its tight and preferential interaction with the BH3 domain of BAX. Cell Res 2011, 21(4):627-641. http://dx.doi.org/10.1038/cr.2010.149 webcite
  • [40]Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ: Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2002, 2(3):183-192.
  • [41]Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR, Newmeyer DD: BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 2005, 17(4):525-535. http://dx.doi.org/10.1016/j.molcel.2005.02.003 webcite
  • [42]Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ: Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 1995, 80(2):285-291.
  • [43]Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ: Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 1996, 87(4):619-628.
  • [44]Datta SR, Katsov A, Hu L, Petros A, Fesik SW, Yaffe MB, Greenberg ME: 14-3-3 proteins and survival kinases cooperate to inactivate BAD by BH3 domain phosphorylation. Mol Cell 2000, 6:41-51.
  • [45]Porter GW, Khuri FR, Fu H: Dynamic 14-3-3/client protein interactions integrate survival and apoptotic pathways. Semin Cancer Biol 2006, 16(3):193-202. http://dx.doi.org/10.1016/j.semcancer.2006.03.003 webcite
  • [46]Nomura M, Shimizu S, Sugiyama T, Narita M, Ito T, Matsuda H, Tsujimoto Y: 14-3-3 Interacts directly with and negatively regulates pro-apoptotic Bax. J Biol Chem 2003, 278(3):2058-2065. http://dx.doi.org/10.1074/jbc.M207880200 webcite
  • [47]Reed JC, Zha H, Aime-Sempe C, Takayama S, Wang HG: Structure-function analysis of Bcl-2 family proteins. Regulators of programmed cell death. Adv Exp Med Biol 1996, 406:99-112.
  • [48]Cory S, Adams JM: The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2002, 2(9):647-656. http://dx.doi.org/10.1038/nrc883 webcite
  • [49]Lu X, Lane DP: Differential induction of transcriptionally active p53 following UV or ionizing radiation: defects in chromosome instability syndromes? Cell 1993, 75(4):765-778.
  • [50]Horn HF, Vousden KH: Coping with stress: multiple ways to activate p53. Oncogene 2007, 26(9):1306-1316. http://dx.doi.org/10.1038/sj.onc.1210263 webcite
  • [51]Kennedy SG, Wagner AJ, Conzen SD, Jordán J, Bellacosa A, Tsichlis PN, Hay N: The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev 1997, 11(6):701-713.
  • [52]Marte BM, Downward J: PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem Sci 1997, 22(9):355-358.
  • [53]Kandel ES, Hay N: The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res 1999, 253:210-229. http://dx.doi.org/10.1006/excr.1999.4690 webcite
  • [54]Amundson SA, Myers TG, Fornace AJ: Roles for p53 in growth arrest and apoptosis: putting on the brakes after genotoxic stress. Oncogene 1998, 17(25):3287-3299. http://dx.doi.org/10.1038/sj.onc.1202576 webcite
  • [55]Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan MB, Siliciano JD: Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 1998, 281(5383):1677-1679.
  • [56]Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD: Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc Natl Acad Sci USA 1999, 96(24):13777-13782.
  • [57]Shieh SY, Ikeda M, Taya Y, Prives C: DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 1997, 91(3):325-334.
  • [58]Fiscella M, Zhang H, Fan S, Sakaguchi K, Shen S, Mercer WE, Woude GFV, O’Connor PM, Appella E: Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proc Natl Acad Sci USA 1997, 94(12):6048-6053.
  • [59]Batchelor E, Loewer A, Mock C, Lahav G: Stimulus-dependent dynamics of p53 in single cells. Mol Syst Biol 2011, 7:488. http://dx.doi.org/10.1038/msb.2011.20 webcite
  • [60]Haupt S, Berger M, Goldberg Z, Haupt Y: Apoptosis – the p53 network. J Cell Sci 2003, 116(Pt 20):4077-4085. http://dx.doi.org/10.1242/jcs.00739 webcite
  • [61]Tomasini R, Samir AA, Carrier A, Isnardon D, Cecchinelli B, Soddu S, Malissen B, Dagorn JC, Iovanna JL, Dusetti NJ: TP53INP1s and homeodomain-interacting protein kinase-2 (HIPK2) are partners in regulating p53 activity. J Biol Chem 2003, 278(39):37722-37729. http://dx.doi.org/10.1074/jbc.M301979200 webcite
  • [62]Rinaldo C, Prodosmo A, Mancini F, Iacovelli S, Sacchi A, Moretti F, Soddu S: MDM2-regulated degradation of HIPK2 prevents p53Ser46 phosphorylation and DNA damage-induced apoptosis. Mol Cell 2007, 25(5):739-750. http://dx.doi.org/10.1016/j.molcel.2007.02.008 webcite
  • [63]Smeenk L, van Heeringen SJ, Koeppel M, Gilbert B, Janssen-Megens E, Stunnenberg HG, Lohrum M: Role of p53 serine 46 in p53 target gene regulation. PLoS One 2011, 6(3):e17574. http://dx.doi.org/10.1371/journal.pone.0017574 webcite
  • [64]Levine AJ, Momand J, Finlay CA: The p53 tumour suppressor gene. Nature 1991, 351(6326):453-456. http://dx.doi.org/10.1038/351453a0 webcite
  • [65]Hollstein M, Sidransky D, Vogelstein B, Harris CC: p53 mutations in human cancers. Science 1991, 253(5015):49-53.
  • [66]Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME: Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997, 91(2):231-241.
  • [67]Khwaja A, Rodriguez-Viciana P, Wennström S, Warne PH, Downward J: Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J 1997, 16(10):2783-2793. http://dx.doi.org/10.1093/emboj/16.10.2783 webcite
  • [68]Toulany M, Baumann M, Rodemann HP: Stimulated PI3K-AKT signaling mediated through ligand or radiation-induced EGFR depends indirectly, but not directly, on constitutive K-Ras activity. Mol Cancer Res 2007, 5(8):863-872. http://dx.doi.org/10.1158/1541-7786.MCR-06-0297 webcite
  • [69]Alessi DR, Deak M, Casamayor A, Caudwell FB, Morrice N, Norman DG, Gaffney P, Reese CB, MacDougall CN, Harbison D, Ashworth A, Bownes M: 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol 1997, 7(10):776-789.
  • [70]Franke TF, Kaplan DR, Cantley LC, Toker A: Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 1997, 275(5300):665-668.
  • [71]Hanada M, Feng J, Hemmings BA: Structure, regulation and function of PKB/AKT–a major therapeutic target. Biochim Biophys Acta 2004, 1697(1–2):3-16. http://dx.doi.org/10.1016/j.bbapap.2003.11.009 webcite
  • [72]Stambolic V, MacPherson D, Sas D, Lin Y, Snow B, Jang Y, Benchimol S, Mak TW: Regulation of PTEN transcription by p53. Mol Cell 2001, 8(2):317-325.
  • [73]Mayo LD, Seo YR, Jackson MW, Smith ML, Guzman JR, Korgaonkar CK, Donner DB: Phosphorylation of human p53 at serine 46 determines promoter selection and whether apoptosis is attenuated or amplified. J Biol Chem 2005, 280(28):25953-25959. http://dx.doi.org/10.1074/jbc.M503026200 webcite
  • [74]Haupt Y, Maya R, Kazaz A, Oren M: Mdm2 promotes the rapid degradation of p53. Nature 1997, 387(6630):296-299. http://dx.doi.org/10.1038/387296a0 webcite
  • [75]Ogawara Y, Kishishita S, Obata T, Isazawa Y, Suzuki T, Tanaka K, Masuyama N, Gotoh Y: Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem 2002, 277(24):21843-21850. http://dx.doi.org/10.1074/jbc.M109745200 webcite
  • [76]Stucki JW, Simon HU: Mathematical modeling of the regulation of caspase-3 activation and degradation. J Theor Biol 2005, 234:123-131. http://dx.doi.org/10.1016/j.jtbi.2004.11.011 webcite
  • [77]Bagci EZ, Vodovotz Y, Billiar TR, Ermentrout GB, Bahar I: Bistability in apoptosis: roles of Bax, Bcl-2, and mitochondrial permeability transition pores. Biophys J 2006, 90(5):1546-1559. http://dx.doi.org/10.1529/biophysj.105.068122 webcite
  • [78]Wee KB, Surana U, Aguda BD: Oscillations of the p53-Akt network: implications on cell survival and death. PLoS One 2009, 4(2):e4407. http://dx.doi.org/10.1371/journal.pone.0004407 webcite
  • [79]Ciliberto A, Novak B, Tyson JJ: Steady states and oscillations in the p53/Mdm2 network. Cell Cycle 2005, 4(3):488-493. http://dx.doi.org/10.4161/cc.4.3.1548 webcite
  • [80]Geva-Zatorsky N, Rosenfeld N, Itzkovitz S, Milo R, Sigal A, Dekel E, Yarnitzky T, Liron Y, Polak P, Lahav G, Alon U: Oscillations and variability in the p53 system. Mol Syst Biol 2006, 2:2006.0033. http://dx.doi.org/10.1038/msb4100068 webcite
  • [81]Hat B, Puszynski K, Lipniacki T: Exploring mechanisms of oscillations in p53 and nuclear factor-κB systems. IET Syst Biol 2009, 3(5):342-355. http://dx.doi.org/10.1049/iet-syb.2008.0156 webcite
  • [82]Puszyński K, Hat B, Lipniacki T: Oscillations and bistability in the stochastic model of p53 regulation. J Theor Biol 2008, 254(2):452-465. http://dx.doi.org/10.1016/j.jtbi.2008.05.039 webcite
  • [83]Zhang XP, Liu F, Wang W: Two-phase dynamics of p53 in the DNA damage response. Proc Natl Acad Sci USA 2011, 108(22):8990-8995. http://dx.doi.org/10.1073/pnas.1100600108 webcite
  • [84]Li Z, Ni M, Li J, Zhang Y, Ouyang Q, Tang C: Decision making of the p53 network: Death by integration. J Theor Biol 2010. http://dx.doi.org/10.1016/j.jtbi.2010.11.041 webcite
  • [85]Tian XJ, Liu F, Zhang XP, Li J, Wang W: A two-step mechanism for cell fate decision by coordination of nuclear and mitochondrial p53 activities. PLoS One 2012, 7(6):e38164. http://dx.doi.org/10.1371/journal.pone.0038164 webcite
  • [86]Schlatter R, Schmich K, Vizcarra IA, Scheurich P, Sauter T, Borner C, Ederer M, Merfort I, Sawodny O: ON/OFF and beyond–a boolean model of apoptosis. PLoS Comput Biol 2009, 5(12):e1000595. http://dx.doi.org/10.1371/journal.pcbi.1000595 webcite
  • [87]Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, Korsmeyer SJ: BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 2001, 8(3):705-711. http://dx.doi.org/10.1016/S1097-2765(01)00320-3 webcite
  • [88]Adachi M, Imai K: The proapoptotic BH3-only protein BAD transduces cell death signals independently of its interaction with Bcl-2. Cell Death Differ 2002, 9(11):1240-1247. http://dx.doi.org/10.1038/sj.cdd.4401097 webcite
  • [89]Weinberg RL, Veprintsev DB, Fersht AR: Cooperative binding of tetrameric p53 to DNA. J Mol Biol 2004, 341(5):1145-1159. http://dx.doi.org/10.1016/j.jmb.2004.06.071 webcite
  • [90]Puszyński K, Bertolusso R, Lipniacki T: Crosstalk between p53 and nuclear factor-κB systems: pro- and anti-apoptotic functions of NF-κB. IET Syst Biol 2009, 3(5):356-367. http://dx.doi.org/10.1049/iet-syb.2008.0172 webcite
  • [91]Wittmann DM, Krumsiek J, Saez-Rodriguez J, Lauffenburger DA, Klamt S, Theis FJ: Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling. BMC Syst Biol 2009, 3:98. http://dx.doi.org/10.1186/1752-0509-3-98 webcite BioMed Central Full Text
  • [92]Goñi-Moreno A, Amos M: A reconfigurable NAND/NOR genetic logic gate. BMC Syst Biol 2012, 6:126. http://dx.doi.org/10.1186/1752-0509-6-126 webcite BioMed Central Full Text
  • [93]van Delft MF, Wei AH, Mason KD, Vandenberg CJ, Chen L, Czabotar PE, Willis SN, Scott CL, Day CL, Cory S, Adams JM, Roberts AW, Huang DCS: The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 2006, 10(5):389-399. http://dx.doi.org/10.1016/j.ccr.2006.08.027 webcite
  • [94]He L, Perkins GA, Poblenz AT, Harris JB, Hung M, Ellisman MH, Fox DA: Bcl-xL overexpression blocks bax-mediated mitochondrial contact site formation and apoptosis in rod photoreceptors of lead-exposed mice. Proc Natl Acad Sci USA 2003, 100(3):1022-1027. http://dx.doi.org/10.1073/pnas.0333594100 webcite
  • [95]Sakamaki J, Daitoku H, Ueno K, Hagiwara A, Yamagata K, Fukamizu A: Arginine methylation of BCL-2 antagonist of cell death (BAD) counteracts its phosphorylation and inactivation by Akt. Proc Natl Acad Sci USA 2011, 108(15):6085-6090. http://dx.doi.org/10.1073/pnas.1015328108 webcite
  • [96]Yang Y, Bedford MT: Protein arginine methyltransferases and cancer. Nat Rev Cancer 2013, 13:37-50. http://dx.doi.org/10.1038/nrc3409 webcite
  • [97]Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N: Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 2000, 288(5468):1053-1058.
  • [98]Nakano K, Vousden KH: PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 2001, 7(3):683-694.
  文献评价指标  
  下载次数:59次 浏览次数:26次