期刊论文详细信息
BMC Neuroscience
Hirano bodies differentially modulate cell death induced by tau and the amyloid precursor protein intracellular domain
Ruth Furukawa1  Marcus Fechheimer1  Marla Gearing3  Parker Evans1  John Michael Sweetnam1  Matthew Furgerson2  William Spears1 
[1]Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
[2]Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
[3]Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
关键词: Frontotemporal dementia;    Alzheimer’s disease;    Neurodegeneration;    Amyloid precursor protein;    Tau;    Actin;    Hirano bodies;   
Others  :  1091958
DOI  :  10.1186/1471-2202-15-74
 received in 2014-04-07, accepted in 2014-06-06,  发布年份 2014
PDF
【 摘 要 】

Background

Hirano bodies are actin-rich paracrystalline inclusions found in brains of patients with Alzheimer’s disease (AD), frontotemporal dementia (FTD), and in normal aged individuals. Although studies of post-mortem brain tissue provide clues of etiology, the physiological function of Hirano bodies remains unknown. A cell culture model was utilized to study the interactions of mutant tau proteins, model Hirano bodies, and GSK3β in human astrocytoma cells.

Results

Most tau variants showed co-localization with model Hirano bodies. Cosedimentation assays revealed this interaction may be direct, as recombinant purified forms of tau are all capable of binding F-actin. Model Hirano bodies had no effect or enhanced cell death induced by tau in the absence of amyloid precursor protein intracellular domain (AICD). In the presence of AICD and tau, synergistic cell death was observed in most cases, and model Hirano bodies decreased this synergistic cell death, except for forms of tau that caused significant cell death in the presence of Hirano bodies only. A role for the kinase GSK3β is suggested by the finding that a dominant negative form of GSK3β reduces this synergistic cell death. A subset of Hirano bodies in brain tissue of both Alzheimer’s disease and normal aged individuals was found to contain tau, with some Hirano bodies in Alzheimer’s disease brains containing hyperphosphorylated tau.

Conclusion

The results demonstrate a complex interaction between tau and AICD involving activation of GSK3β in promoting cell death, and the ability of Hirano bodies to modulate this process.

【 授权许可】

   
2014 Spears et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128175402795.pdf 2521KB PDF download
Figure 9. 86KB Image download
Figure 8. 90KB Image download
Figure 7. 102KB Image download
Figure 6. 72KB Image download
Figure 5. 68KB Image download
Figure 4. 69KB Image download
Figure 3. 41KB Image download
Figure 2. 66KB Image download
Figure 1. 18KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Huang Y, Mucke L: Alzheimer mechanisms and therapeutic strategies. Cell 2012, 148:1204-1222.
  • [2]Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin JF, Bruni AC, Montesi MP, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky RJ, Wasco W, Da Silva HA, Haines JL, Perkicak-Vance MA, Tanzi RE, Roses AD, et al.: Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 1995, 375:754-760.
  • [3]Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, Yu CE, Jondro PD, Schmidt SD, Wang K, Crowley A, Fu Y-H, Guenette SY, Galas D, Nemens E, Wijsman EM, Bird TD, Schellenberg G, Tanzi R: Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 1995, 269:973-977.
  • [4]Hardy J, Selkoe DJ: The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science 2002, 297:353-356.
  • [5]Beckett C, Nalivaeva NN, Turner AJ: Nuclear signalling by membrane protein intracellular domains: the AICD enigma. Cell Signal 2012, 24:402-409.
  • [6]Pardossi-Piquard R, Checler F: The physiology of the beta-amyloid precursor protein intracellular domain AICD. J Neurochem 2012, 120(Suppl 1):109-124.
  • [7]Kim H-S, Kim E-M, Lee J-P, Park CH, Kim S, Seo J-H, Chang K-A, Yu E, Jeong S-J, Chong YH, Suh AY-H: C-terminal fragments of amyloid precursor protein exert neurotoxicity by inducing glycogen synthase kinase-3β expression. FASEB J 2003, 17:1951-1954.
  • [8]Von Rotz RC, Kohli BM, Bosset J, Meier M, Suzuki T, Nitsch RM, Konietzko U: The APP intracellular domain forms nuclear multiprotein complexes and regulates the transcription of its own precursor. J Cell Sci 2004, 117:4435-4448.
  • [9]Ghosal K, Vogt DL, Liang M, Shen Y, Lamb BT, Pimplikar SW: Alzheimer's disease-like pathological features in transgenic mice expressing the APP intracellular domain. Proc Natl Acad Sci U S A 2009, 106:18367-18372.
  • [10]Braak E, Braak H, Mandelkow EM: A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol 1994, 87:554-567.
  • [11]Braak H, Braak E: Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991, 82:239-259.
  • [12]Holzer M, Holzapfel HP, Zedlick D, Bruckner MK, Arendt T: Abnormally phosphorylated tau protein in Alzheimer's disease: heterogeneity of individual regional distribution and relationship to clinical severity. Neuroscience 1994, 63:499-516.
  • [13]Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen RC, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, Kwon JM, Nowotny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowski J, Basun H, et al.: Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 1998, 393:702-705.
  • [14]Lee VM, Goedert M, Trojanowski JQ: Neurodegenerative tauopathies. Ann Rev Neurosci 2001, 24:1121-1159.
  • [15]van Swieten JC, Stevens M, Rosso SM, Rizzu P, Joosse M, de Koning I, Kamphorst W, Ravid R, Spillantini MG, Niermeijer MF, Heutink P: Phenotypic variation in hereditary frontotemporal dementia with tau mutations. Ann Neurol 1999, 46:617-626.
  • [16]Mirra SS, Murrell JR, Gearing M, Spillantini MG, Goedert M, Crowther RA, Levey AI, Jones R, Green J, Shoffner JM, Wainer BH, Schmidt ML, Trojanowski JQ, Ghetti B: Tau pathology in a family with dementia and a P301L mutation in tau. J Neuropathol Exp Neurol 1999, 58:335-345.
  • [17]Miyasaka T, Morishima-Kawashima M, Ravid R, Kamphorst W, Nagashima K, Ihara Y: Selective deposition of mutant tau in the FTDP-17 brain affected by the P301L mutation. J Neuropathol Exp Neurol 2001, 60:872-884.
  • [18]Hayashi S, Toyoshima Y, Hasegawa M, Umeda Y, Wakabayashi K, Tokiguchi S, Iwatsubo T, Takahashi H: Late-onset frontotemporal dementia with a novel exon 1 (Arg5His) tau gene mutation. Ann Neurol 2002, 51:525-530.
  • [19]Momeni P, Pittman A, Lashley T, Vandrovcova J, Malzer E, Luk C, Hulette C, Lees A, Revesz T, Hardy J, De Silva R: Clinical and pathological features of an Alzheimer's disease patient with the MAPT Delta K280 mutation. Neurobiol Aging 2009, 30:388-393.
  • [20]Gibson PH, Tomlinson BE: Numbers of Hirano bodies in the hippocampus of normal and demented people with Alzheimer's disease. J Neurol Sci 1977, 33:199-206.
  • [21]Hirano A: Hirano bodies and related neuronal inclusions. Neuropathol Appl Neurobiol 1994, 20:3-11.
  • [22]Martinez-Saez E, Gelpi E, Rey M, Ferrer I, Ribalta T, Botta-Orfila T, Nos C, Yague J, Sanchez-Valle R: Hirano body-rich subtypes of Creutzfeldt-Jakob disease. Neuropathol Appl Neurobiol 2011, 38:153-161.
  • [23]Minamide LS, Striegl AM, Boyle JA, Meberg PJ, Bamburg JR: Neurodegenerative stimuli induce persistent ADF/Cofilin-actin rods that disrupt distal neurite function. Nat Cell Biol 2000, 2:628-636.
  • [24]Fulga TA, Elson-Schwab I, Khurana V, Steinhib ML, Spires TL, Hyman BT, Feany MB: Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol 2007, 9:139-148.
  • [25]Whiteman IT, Minamide LS, Goh De L, Bamburg JR, Goldsbury C: Rapid changes in phospho-MAP/tau epitopes during neuronal stress: cofilin-actin rods primarily recruit microtubule binding domain epitopes. PLoS One 2011, 6:e20878.
  • [26]Correas I, Padilla R, Avila J: The tubulin-binding sequence of brain microtubule-associated proteins, tau and MAP-2, is also involved in actin binding. Biochem J 1990, 269:61-64.
  • [27]Roger B, Al-Bassam J, Dehmelt L, Milligan RA, Halpain S: MAP2c, but not tau, binds and bundles F-actin via its microtubule binding domain. Curr Biol 2004, 14:363-371.
  • [28]He HJ, Wang XS, Pan R, Wang DL, Liu MN, He RQ: The proline-rich domain of tau plays a role in interactions with actin. BMC Cell Biol 2009, 10:81.
  • [29]Goldman JE: The association of actin with Hirano bodies. J Neuropathol Exp Neurol 1983, 42:146-152.
  • [30]Galloway PG, Perry G, Gambetti P: Hirano body filaments contain actin and actin-associated proteins. J Neuropathol Exp Neurol 1987, 46:185-199.
  • [31]Maciver SK, Harrington CR: Two actin binding proteins, actin depolymerizing factor and cofilin, are associated with Hirano bodies. Neuroreport 1995, 6:1985-1988.
  • [32]Galloway PG, Perry G, Kosik KS, Gambetti P: Hirano bodies contain tau protein. Brain Res 1987, 403:337-340.
  • [33]Peterson C, Kress Y, Vallee R, Goldman JE: High molecular weight microtubule-associated proteins bind to actin lattices (Hirano bodies). Acta Neuropathol 1988, 77:168-174.
  • [34]Jordan-Sciutto K, Dragich J, Walcott D, Bowser R: The presence of FAC1 protein in Hirano bodies. Neuropathol Appl Neurobiol 1998, 24:359-366.
  • [35]Peress NS, Perillo E: Differential expression of TFG Beta 1, 2, and 3 isotypes in Alzheimer's disease: a comparative immunohistochemical study with cerebral infarction, aged human and mouse control brains. J Neuropathol Exp Neurol 1995, 54:802-811.
  • [36]Munoz DG, Wang D, Greenberg BD: Hirano bodies accumulate C-terminal sequences of beta-amyloid precursor protein (beta-APP) epitopes. J Neuropathol Exp Neurol 1993, 52:14-21.
  • [37]Ha S, Furukawa R, Fechheimer M: Association of AICD and Fe65 with Hirano bodies reduces transcriptional activation and initiation of apoptosis. Neurobiol Aging 2011, 32:2287-2298.
  • [38]Hirano A, Dembitzer HM, Kurland LT, Zimmerman HM: The fine structure of some intraganlionic alterations. J Neuropathol Exp Neurol 1968, 27:167-182.
  • [39]Lim RWL, Furukawa R, Fechheimer M: Evidence of intramolecular regulation of the Dictyostelium discoideum 34,000 dalton F-actin bundling protein. Biochemistry 1999, 38:16323-16332.
  • [40]Maselli AG, Davis R, Furukawa R, Fechheimer M: Formation of Hirano bodies in Dictyostelium and mammalian cells induced by expression of a modified form of an actin cross-linking protein. J Cell Sci 2002, 115:1939-1952.
  • [41]Maselli AG, Furukawa R, Thomson SAM, Davis RC, Fechheimer M: Formation of Hirano bodies induced by expression of an actin cross-linking protein with a gain of function mutation. Eucaryot Cell 2003, 2:778-787.
  • [42]Davis RC, Furukawa R, Fechheimer M: A cell culture model for investigation of Hirano bodies. Acta Neuropathol 2008, 115:205-217.
  • [43]Ha S, Furukawa R, Stramiello M, Wagner JJ, Fechheimer M: Transgenic mouse model for the formation of Hirano bodies. BMC Neurosci 2011, 12:97-113.
  • [44]Furgerson M, Fechheimer M, Furukawa R: Model Hirano bodies protect against tau-independent and tau-dependent cell death initiated by the amyloid precursor protein intracellular domain. PLoS One 2012, 7:e44996.
  • [45]Ittner LM, Gotz J: Amyloid-beta and tau–a toxic pas de deux in Alzheimer's disease. Nat Rev Neurosci 2011, 12:65-72.
  • [46]Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA, Grant MK, Pitstick R, Carlson GA, Lanier LM, Yuan LL, Ashe KH, Liao D: Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 2010, 68:1067-1081.
  • [47]Barghorn S, Zheng-Fischhofer Q, Ackmann M, Biernat J, Von Bergen M, Mandelkow EM, Mandelkow E: Structure, microtubule interactions, and paired helical filament aggregation by tau mutants of frontotemporal dementias. Biochemistry 2000, 39:11714-11721.
  • [48]Von Bergen M, Barghorn S, Li L, Marx A, Biernat J, Mandelkow EM, Mandelkow E: Mutations of tau protein in frontotemporal dementia promote aggregation of paired helical filaments by enhancing local beta-structure. J Biol Chem 2001, 276:48165-48174.
  • [49]Goedert M, Jakes R, Crowther RA: Effects of frontotemporal dementia FTDP-17 mutations on heparin-induced assembly of tau filaments. FEBS Lett 1999, 450:306-311.
  • [50]Wang YP, Biernat J, Pickhardt M, Mandelkow E, Mandelkow EM: Stepwise proteolysis liberates tau fragments that nucleate the Alzheimer-like aggregation of full-length tau in a neuronal cell model. Proc Natl Acad Sci U S A 2007, 104:10252-10257.
  • [51]Eckermann K, Mocanu MM, Khlistunova I, Biernat J, Nissen A, Hofmann A, Schonig K, Bujard H, Haemisch A, Mandelkow E, Zhou L, Rune G, Mandelkow EM: The beta-propensity of Tau determines aggregation and synaptic loss in inducible mouse models of tauopathy. J Biol Chem 2007, 282:31755-31765.
  • [52]Mocanu MM, Nissen A, Eckermann K, Khlistunova I, Biernat J, Drexler D, Petrova O, Schonig K, Bujard H, Mandelkow E, Zhou L, Rune G, Mandelkow EM: The potential for beta-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in inducible mouse models of tauopathy. J Neurosci 2008, 16:737-748.
  • [53]Fatouros C, Pir GJ, Biernat J, Koushika SP, Mandelkow E, Mandelkow EM, Schmidt E, Baumeister R: Inhibition of tau aggregation in a novel Caenorhabditis elegans model of tauopathy mitigates proteotoxicity. Hum Mol Genet 2012, 21:3587-3603.
  • [54]Khlistunova I, Biernat J, Wang Y, Pickhardt M, Von Bergen M, Gazova Z, Mandelkow E, Mandelkow EM: Inducible expression of Tau repeat domain in cell models of tauopathy: aggregation is toxic to cells but can be reversed by inhibitor drugs. J Biol Chem 2006, 281:1205-1214.
  • [55]Sydow A, Van der Jeugd A, Zheng F, Ahmed T, Balschun D, Petrova O, Drexler D, Zhou L, Rune G, Mandelkow E, D'Hooge R, Alzheimer C, Mandelkow EM: Tau-induced defects in synaptic plasticity, learning, and memory are reversible in transgenic mice after switching off the toxic Tau mutant. J Neurosci 2011, 31:2511-2525.
  • [56]Santa-Maria I, Santpere G, MacDonald MJ, De Barreda EG, Hernandez F, Moreno FJ, Ferrer I, Avila J: Coenzyme Q induces tau aggregation, tau filaments, and Hirano bodies. J Neuropathol Exp Neurol 2008, 67:428-434.
  • [57]Kremer A, Louis JV, Jaworski T, Van Leuven F: GSK3 and Alzheimer's Disease: Facts and Fiction. Front Mol Neurosci 2011, 4:17.
  • [58]Takashima A, Noguchi K, Michel G, Mercken M, Hoshi M, Ishiguro K, Imahori K: Exposure of rat hippocampal neurons to amyloid beta peptide (25–35) induces the inactivation of phosphatidyl inositol-3 kinase and the activation of tau protein kinase I/glycogen synthase kinase-3 beta. Neurosci Lett 1996, 203:33-36.
  • [59]Bardai FH, D'Mello SR: Selective toxicity by HDAC3 in neurons: regulation by Akt and GSK3beta. J Neurosci 2011, 31:1746-1751.
  • [60]Kuret J, Congdon EE, Li G, Yin H, Yu X, Zhong Q: Evaluating triggers and enhancers of tau fibrillization. Microsc Res Tech 2005, 67:141-155.
  • [61]Ramachandran G, Udgaonkar JB: Mechanistic studies unravel the complexity inherent in tau aggregation leading to Alzheimer's disease and the tauopathies. Biochemistry 2013, 52:4107-4126.
  • [62]Kotani S, Nishida E, Kumagai H, Sakai H: Calmodulin inhibits interaction of actin with MAP2 and Tau, two major microtubule-associated proteins. J Biol Chem 1985, 260:10779-10783.
  • [63]Kempf M, Clement A, Faissner A, Lee G, Brandt R: Tau binds to the distal axon early in development of polarity in a microtubule- and microfilament-dependent manner. J Neurosci 1996, 16:5583-5592.
  • [64]Maas T, Eidenmuller J, Brandt R: Interaction of tau with the neural membrane cortex is regulated by phosphorylation at sites that are modified in paired helical filaments. J Biol Chem 2000, 275:15733-15740.
  • [65]Farias GA, Munoz JP, Garrido J, Maccioni RB: Tubulin, actin, and tau protein interactions and the study of their macromolecular assemblies. J Cell Biochem 2002, 85:315-324.
  • [66]Steinhilb ML, Dias-Santagata D, Fulga TA, Felch DL, Feany MB: Tau phosphorylation sites work in concert to promote neurotoxicity in vivo. Mol Biol Cell 2007, 18:5060-5068.
  • [67]Biernat J, Gustke N, Drewes G, Mandelkow EM, Mandelkow E: Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding. Neuron 1993, 11:153-163.
  • [68]Satoh J, Tabunoki H, Ishida T, Saito Y, Arima K: Ubiquilin-1 immunoreactivity is concentrated on Hirano bodies and dystrophic neurites in Alzheimer's disease brains. Neuropath Appl Neurobiol 2013, 39:817-830.
  • [69]Selden SC, Pollard TD: Phosphorylation of microtubule-associated proteins regulates their interaction with actin filaments. J Biol Chem 1983, 258:7064-7071.
  • [70]Griffith LM, Pollard TD: Cross-linking of actin filament networks by self-association and actin-bonding macromolecules. J Biol Chem 1982, 257:9135-9142.
  • [71]Barbato C, Canu N, Zambrano N, Serafino A, Minopoli G, Ciotti MT, Amadoro G, Russo T, Calissano P: Interaction of Tau with Fe65 links tau to APP. Neurobiol Dis 2005, 18:399-408.
  • [72]Vogelsberg-Ragaglia V, Bruce J, Richter-Landsberg C, Zhang B, Hong M, Trojanowski JQ, Lee VM: Distinct FTDP-17 missense mutations in tau produce tau aggregates and other pathological phenotypes in transfected CHO cells. Mol Biol Cell 2000, 11:4093-4104.
  • [73]Krishnamurthy P, Johnson GV: Mutant (R406W) human tau is hyperphosphorylated and does not efficiently bind microtubules in a neuronal cortical cell model. J Biol Chem 2004, 279:7893-7900.
  • [74]Alonso AD, Mederlyova A, Novak M, Grundke-Iqbal I, Iqbal K: Promotion of hyperphosphorylation by frontotemporal dementia tau mutations. J Biol Chem 2004, 279:34873-34881.
  • [75]Hong M, Zhukareva V, Vogelsberg-Ragaglia V, Wszolek Z, Reed L, Miller BI, Geschwind DH, Bird TD, McKeel D, Goate A, Morris JC, Wilhelmsen KC, Schellenberg GD, Trojanowski JQ, Lee VM: Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science 1998, 282:1914-1917.
  • [76]Feinstein SC, Wilson L: Inability of tau to properly regulate neuronal microtubule dynamics: a loss-of-function mechanism by which tau might mediate neuronal cell death. Biochim Biophys Acta 2005, 1739:268-279.
  • [77]Bramblett GT, Goedert M, Jakes R, Merrick SE, Trojanowski JQ, Lee VM: Abnormal tau phosphorylation at Ser396 in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding. Neuron 1993, 10:1089-1099.
  • [78]Alonso AD, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K: Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci U S A 2001, 98:6923-6928.
  • [79]Alonso AD, Zaidi T, Novak M, Barra HS, Grundke-Iqbal I, Iqbal K: Interaction of tau isoforms with Alzheimer's disease abnormally hyperphosphorylated tau and in vitro phosphorylation into disease-like protein. J Biol Chem 2001, 276:37967-37973.
  • [80]Perez M, Hernandez F, Lim F, Diaz-Nido J, Avila J: Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model. J Alzheimers Dis 2003, 5:301-308.
  • [81]Noble W, Planel E, Zehr C, Olm V, Meyerson J, Suleman F, Gaynor K, Wang L, LaFrancois J, Feinstein B, Burns M, Krishnamurthy P, Wen Y, Bhat R, Lewis J, Dickson D, Duff K: Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci U S A 2005, 102:6990-6995.
  • [82]Alonso AD, Adel C, Li B, Grundke-Iqbal I, Iqbal K: Polymerization of hyperphosphorylated tau into filaments eliminates its inhibitory activity. Proc Natl Acad Sci U S A 2006, 103:8864-8869.
  • [83]Jeganathan S, Hascher A, Chinnathambi S, Biernat J, Mandelkow EM, Mandelkow E: Proline-directed pseudo-phosphorylation at AT8 and PHF1 epitopes induces a compaction of the paperclip folding of Tau and generates a pathological (MC-1) conformation. J Biol Chem 2008, 283:32066-32076.
  • [84]Eidenmüller J, Fath T, Hellwig A, Reed J, Sontag E, Brandt R: Structural and functional implications of tau hyperphosphorylation: information from phosphorylation-mimicking mutated tau proteins. Biochemistry 2000, 39:13166-13175.
  • [85]Cho JH, Johnson GV: Primed phosphorylation of tau at Thr231 by glycogen synthase 3beta (GSK3beta) play a critical role in regulating tau's ability to bind and stabilize microtubules. J Neurochem 2004, 88:349-358.
  • [86]Li T, Paudel HK: Glycogen synthase kinase 3beta phosphorylates Alzheimer's disease-specific Ser396 of microtubule-associated protein tau by a sequential mechanism. Biochemistry 2006, 45:3125-3133.
  • [87]Sengupta A, Novak M, Grundke-Iqbal I, Iqbal K: Regulation of phosphorylation of tau by cyclin-dependent kinase 5 and glycogen kinase-3 at substrate level. FEBS Lett 2006, 580:5925-5933.
  • [88]Liu SJ, Zhang JY, Li HL, Fang ZY, Wang Q, Deng HM, Gong CX, Grundke-Iqbal I, Iqbal K: Tau becomes a more favorable substrate for GSK-3 when it is prephosphorylated by PKA in rat brain. J Biol Chem 2004, 279:50078-50088.
  • [89]Shahani N, Subramaniam S, Wolf T, Tackenberg C, Brandt R: Tau aggregation and progressive neuronal degeneration in the absence of changes in spine density and morphology after targeted expression of Alzheimer's disease-relevant tau constructs in organotypic hippocampal slices. J Neurosci 2006, 26:6103-6114.
  • [90]Morris M, Maeda S, Vossel K, Mucke L: The many faces of tau. Neuron 2011, 70:410-426.
  • [91]Von Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E: Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif ((306)VQIVYK(311)) forming beta structure. Proc Natl Acad Sci U S A 2000, 97:5129-5134.
  • [92]Chang E, Kim S, Yin H, Nagaraja HN, Kuret J: Pathogenic missense MAPT mutations differentally modulate tau aggregation propensity at nucleation and extension steps. J Neurochem 2008, 107:1113-1123.
  • [93]Dayanandan R, Van Slegtenhorst M, Mack TG, Ko L, Yen SH, Leroy K, Brion JP, Anderton BH, Hutton M, Lovestone S: Mutations in tau reduce its microtubule binding properties in intact cells and affect its phosphorylation. FEBS Lett 1999, 446:228-232.
  • [94]Connell JW, Gibb GM, Betts JC, Blackstock WP, Gallo J, Lovestone S, Hutton M, Anderton BH: Effects of FTDP-17 mutations on the in vitro phosphorylation of tau by glycogen synthase kinase 3beta identified by mass spectrometry demonstrate certain mutations exert long-range conformational changes. FEBS Lett 2001, 493:40-44.
  • [95]Gauthier-Kemper A, Weissmann C, Golovyashkina N, Sebo-Lemke Z, Drewes G, Gerke V, Heinisch JJ, Brandt R: The frontotemporal dementia mutation R406W blocks tau's interaction with the membrane in an annexin A2-dependent manner. J Cell Biol 2011, 192:647-661.
  • [96]Wszolek ZK, Tsuboi Y, Ghetti B, Pickering-Brown S, Baba Y, Cheshire WP: Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Orphanet J Rare Dis 2006, 1:30.
  • [97]Furukawa R, Fechheimer M: Role of the Dictyostelium 30 kDa protein in actin bundle formation. Biochemistry 1996, 35:7224-7232.
  • [98]Kinoshita A, Whelan CM, Berezovska O, Hyman BT: The gamma secretase-generated carboxyl-terminal domain of the amyloid precursor protein induces apoptosis via Tip60 in H4 cells. J Biol Chem 2002, 277:28530-28536.
  • [99]Summers SA, Kao AW, Kohn AD, Backus GS, Roth RA, Pessin JE, Birnbaum MJ: The role of glycogen synthase kinase 3beta in insulin-stimulated glucose metabolism. J Biol Chem 1999, 274:17934-17940.
  • [100]Stambolic V, Woodgett JR: Mitogen inactivation of glycogen synthase kinase-3b in intact cells via serine 9 phosphorylation. Biochem J 1994, 303:701-704.
  • [101]Fath T, Eldenmüller J, Brandt R: Tau-mediated cytotoxicity in a pseudohyperphosphorylation model of Alzheimer's disease. J Neurosci 2002, 22:9733-9741.
  • [102]Hedgepeth CM, Conrad LJ, Zhang J, Huang HC, Lee VM, Klein PS: Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev Biol 1997, 185:82-91.
  • [103]Gibson PH: Light and electron microscopic observations on the relationship between Hirano bodies, neuron and glial perikarya in the human hippocampus. Acta Neuropathol 1978, 42:165-171.
  • [104]Garwood CJ, Pooler AM, Atherton J, Hanger DP, Noble W: Astrocytes are important mediators of Abeta-induced neurotoxicity and tau phosphorylation in primary culture. Cell Death Dis 2011, 2:e167.
  • [105]Dickey CA, Erickson J, Kamal A, Burrows F, Kasibhatla S, Eckman CB, Hutton M, Petrucelli L: Development of a high throughput drug sceening assy for detection of changes in tau levels–proof of concept with HSP90 inhibitors. Curr Alzheimer Res 2005, 2:231-238.
  • [106]Bretteville A, Ando K, Ghestem A, Loyens A, Begard S, Beauvillian JC, Sergant N, Hamdane M, Buee L: Two-dimensional electrophoresis of tau mutants reveals specific phosphorylation pattern likely linked to early tau conformational changes. PLoS One 2009, 4:e4843.
  • [107]Barghorn S, Biernat J, Mandelkow E: Purification of Recombinant Tau Protein and Preparation of Alzheimer-Paired Helical Filaments In Vitro. In Amyloid Proteins: Methods and Protocols. Volume 299. Edited by Sigurdsson EM. Totowa, NJ: Humana Press; 2004:35-51.
  • [108]Spudich JA, Watt S: The regulation of rabbit skeletal muscle contraction. J Biol Chem 1971, 246:4866-4871.
  • [109]MacLean-Fletcher SD, Pollard TD: Identification of a factor in conventional muscle actin preparations which inhibits actin filament self-association. Biochem Biophys Res Commun 1980, 96:18-27.
  • [110]Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC: Measurement of protein using bicinchoninic acid. Anal Biochem 1985, 150:76-85.
  • [111]Fechheimer M: The Dictyostelium discoideum 30,000-dalton protein is an actin filament-bundling protein that is selectively present in filopodia. J Cell Biol 1987, 104:1539-1551.
  文献评价指标  
  下载次数:102次 浏览次数:16次