期刊论文详细信息
BMC Genomics
A new association test based on disease allele selection for case–control genome-wide association studies
Zhongxue Chen1 
[1] Department of Epidemiology and Biostatistics, School of Public Health, Indiana University Bloomington, 1025 E. 7th street, PH C104, Bloomington, IN 47405, USA
关键词: Single-nucleotide polymorphism;    Robust test;    Generalized genetic model;   
Others  :  1217241
DOI  :  10.1186/1471-2164-15-358
 received in 2014-02-05, accepted in 2014-05-06,  发布年份 2014
PDF
【 摘 要 】

Background

Current robust association tests for case–control genome-wide association study (GWAS) data are mainly based on the assumption of some specific genetic models. Due to the richness of the genetic models, this assumption may not be appropriate. Therefore, robust but powerful association approaches are desirable.

Results

In this paper, we propose a new approach to testing for the association between the genotype and phenotype for case–control GWAS. This method assumes a generalized genetic model and is based on the selected disease allele to obtain a p-value from the more powerful one-sided test. Through a comprehensive simulation study we assess the performance of the new test by comparing it with existing methods. Some real data applications are also used to illustrate the use of the proposed test.

Conclusions

Based on the simulation results and real data application, the proposed test is powerful and robust.

【 授权许可】

   
2014 Chen; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150705193453732.pdf 224KB PDF download
【 参考文献 】
  • [1]Cochran W: Some methods for strengthening the common chi-square tests. Biometrics 1954, 10(4):417-451.
  • [2]Armitage P: Tests for linear trends in proportions and frequencies. Biometrics 1955, 11(3):375-386.
  • [3]Zheng G, Freidlin B, Gastwirth JL: Comparison of robust tests for genetic association using case–control studies. IMS Lect Notes-Monogr Ser 2006, 49:253-265. (Optimality: The Second Erich L. Lehmann Symposium)
  • [4]Chen Z, Zheng G: Exact robust tests for detecting candidate-gene association in case–control trio design. J Data Sci 2005, 3:19-33.
  • [5]Freidlin B, Podgor MJ, Gastwirth JL: Efficiency robust tests for survival or ordered categorical data. Biometrics 1999, 55(3):883-886.
  • [6]Freidlin B, Zheng G, Li Z, Gastwirth JL: Trend tests for case–control studies of genetic markers: power, sample size and robustness. Hum Hered 2002, 53(3):146-152.
  • [7]Gonzalez JR, Carrasco JL, Dudbridge F, Armengol L, Estivill X, Moreno V: Maximizing association statistics over genetic models. Genet Epidemiol 2008, 32(3):246-254.
  • [8]Sasieni PD: From genotypes to genes: doubling the sample size. Biometrics 1997, 53(4):1253-1261.
  • [9]Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, Boutin P, Vincent D, Belisle A, Hadjadj S, Balkau B, Heude B, Charpentier G, Hudson TJ, Montpetit A, Pshezhetsky AV, Prentki M, Posner BI, Balding DJ, Meyre D, Polychronakos C, Froguel P: A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007, 445(7130):881-885.
  • [10]Slager SL, Schaid DJ: Case–control studies of genetic markers: power and sample size approximations for Armitage’s test for trend. Hum Hered 2001, 52(3):149-153.
  • [11]Zheng G, Freidlin B, Li Z, JL G: Choice of scores in trend tests for case–control studies of candidate gene associations. Biom J 2003, 45:335-348.
  • [12]Zheng G, Ng HKT: Genetic model selection in two-phase analysis for case–control association studies. Biostatistics 2008, 9(3):391-399.
  • [13]Zang Y, Fung WK, Zheng G: Simple algorithms to calculate the asymptotic null distributions of robust tests in case–control genetic association studies in R. J Stat Softw 2010, 33(8):1-24.
  • [14]Kwak M, Joo J, Zheng G: A robust test for two-stage design in genome-wide association studies. Biometrics 2009, 65(4):1288-1295.
  • [15]Song K, Elston RC: A powerful method of combining measures of association and Hardy-Weinberg disequilibrium for fine-mapping in case–control studies. Stat Med 2006, 25(1):105-126.
  • [16]Wang K, Sheffield VC: A constrained-likelihood approach to marker-trait association studies. Am J Hum Genet 2005, 77(5):768-780.
  • [17]Chen Z, Huang H, Ng HKT: Testing for association in case–control genome-wide association studies with shared controls. Stat Methods Med Res 2013. Published online before print February 1, 2013, doi:101177/0962280212474061
  • [18]Chen Z: Association tests through combining p-values for case control genome–wide association studies. Stat Probability Lett 2013, 83(8):1854-1862.
  • [19]Chen Z, Ng HKT: A Robust method for testing association in genome-wide association studies. Hum Hered 2012, 73(1):26-34.
  • [20]Chen Z, Huang H, Ng HKT: Design and analysis of multiple diseases genome-wide association studies without controls. GENE 2012, 510(1):87-92.
  • [21]Chen Z: A new association test based on Chi-square partition for case-control GWA studies. Genet Epidemiol 2011, 35(7):658-663.
  • [22]Chen Z, Huang H, Ng HKT: An improved robust association test for GWAS with multiple diseases. Stat Probability Lett 2014, 91:153-161.
  • [23]Gastwirth JL: On robust procedures. J Am Stat Assoc 1966, 61:929-948.
  • [24]Gastwirth JL: The use of maximin efficiency robust tests in combining contingency tables and survival analysis. J Am Stat Assoc 1985, 80:380-384.
  • [25]Joo J, Kwak M, Zheng G: Improving power for testing genetic association in case–control studies by reducing the alternative space. Biometrics 2010, 66(1):266-276.
  • [26]Chen Z, Nadarajah S: On the optimally weighted z-test for combining probabilities from independent studies. Comput Stat Data Anal 2014, 70:387-394.
  • [27]Elbaz A, Ross OA, Ioannidis J, Soto-Ortolaza AI, Moisan F, Aasly J, Annesi G, Bozi M, Brighina L, Chartier-Harlin MC, Destée A, Ferrarese C, Ferraris A, Gibson JM, Gispert S, Hadjigeorgiou GM, Jasinska-Myga B, Klein C, Krüger R, Lambert JC, Lohmann K, van de Loo S, Loriot MA, Lynch T, Mellick GD, Mutez E, Nilsson C, Opala G, Puschmann A, Quattrone A, et al.: Independent and joint effects of the MAPT and SNCA genes in Parkinson disease. Ann Neurol 2011, 69(5):778-792.
  • [28]Chen Z, Nadarajah S: Comments on ‘Choosing an optimal method to combine p‐values’ by Sungho Won, Nathan Morris, Qing Lu and Robert C. Elston, Statistics in Medicine 2009; 28: 1537–1553. Stat Med 2011, 30(24):2959-2961.
  • [29]Chen Z: Is the weighted z‐test the best method for combining probabilities from independent tests? J Evol Biol 2011, 24(4):926-930.
  • [30]Loughin TM: A systematic comparison of methods for combining p-values from independent tests. Comput Stat Data Anal 2004, 47(3):467-485.
  • [31]Fisher RA: Statistical Methods for Research Workers. Edinburgh: Oliver and Boyd; 1932.
  文献评价指标  
  下载次数:6次 浏览次数:11次