期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:102
Dual divergence estimators and tests: Robustness results
Article
Toma, Aida1,2  Broniatowski, Michel3 
[1] Acad Econ Studies, Dept Math, Bucharest, Romania
[2] Gheorghe Mihoc Caius Iacob Inst Math Stat & Appl, Bucharest, Romania
[3] Univ Paris 06, LSTA, F-75013 Paris, France
关键词: Location model;    Minimum divergence estimators;    Robust estimation;    Robust test;    Scale model;   
DOI  :  10.1016/j.jmva.2010.07.010
来源: Elsevier
PDF
【 摘 要 】

The class of dual phi-divergence estimators (introduced in Broniatowski and Keziou (2009)[5]) is explored with respect to robustness through the influence function approach. For scale and location models, this class is investigated in terms of robustness and asymptotic relative efficiency. Some hypothesis tests based on dual divergence criteria are proposed and their robustness properties are studied. The empirical performances of these estimators and tests are illustrated by Monte Carlo simulation for both non-contaminated and contaminated data. (C) 2010 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2010_07_010.pdf 609KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:1次