期刊论文详细信息
BMC Medical Genomics
Whole exome sequencing reveals concomitant mutations of multiple FA genes in individual Fanconi anemia patients
Xiaofan Zhu3  Tao Cheng3  Yungui Yang1  Fengchun Yang2  Mingjiang Xu2  Xiaomin Wang3  Miaomiao Li1  Jianfeng Zhou3  Wei Wei3  Quanquan Zhou3  Huimin Zeng3  Weiping Yuan3  Lixian Chang3 
[1] Beijing Institute of Genomics, CAS, Beijing, China;Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA;Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
关键词: Concomitant mutation;    DNA repair;    Exome sequencing;    Fanconi anemia;   
Others  :  797040
DOI  :  10.1186/1755-8794-7-24
 received in 2014-01-05, accepted in 2014-04-29,  发布年份 2014
PDF
【 摘 要 】

Background

Fanconi anemia (FA) is a rare inherited genetic syndrome with highly variable clinical manifestations. Fifteen genetic subtypes of FA have been identified. Traditional complementation tests for grouping studies have been used generally in FA patients and in stepwise methods to identify the FA type, which can result in incomplete genetic information from FA patients.

Methods

We diagnosed five pediatric patients with FA based on clinical manifestations, and we performed exome sequencing of peripheral blood specimens from these patients and their family members. The related sequencing data were then analyzed by bioinformatics, and the FANC gene mutations identified by exome sequencing were confirmed by PCR re-sequencing.

Results

Homozygous and compound heterozygous mutations of FANC genes were identified in all of the patients. The FA subtypes of the patients included FANCA, FANCM and FANCD2. Interestingly, four FA patients harbored multiple mutations in at least two FA genes, and some of these mutations have not been previously reported. These patients’ clinical manifestations were vastly different from each other, as were their treatment responses to androstanazol and prednisone. This finding suggests that heterozygous mutation(s) in FA genes could also have diverse biological and/or pathophysiological effects on FA patients or FA gene carriers. Interestingly, we were not able to identify de novo mutations in the genes implicated in DNA repair pathways when the sequencing data of patients were compared with those of their parents.

Conclusions

Our results indicate that Chinese FA patients and carriers might have higher and more complex mutation rates in FANC genes than have been conventionally recognized. Testing of the fifteen FANC genes in FA patients and their family members should be a regular clinical practice to determine the optimal care for the individual patient, to counsel the family and to obtain a better understanding of FA pathophysiology.

【 授权许可】

   
2014 Chang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706030233663.pdf 585KB PDF download
Figure 3. 16KB Image download
Figure 2. 13KB Image download
Figure 1. 38KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Alan D, D’Andrea AD: The Fanconi anemia and breast cancer susceptibility pathways. N Engl J Med 2010, 362:1909-1919.
  • [2]Tolar J, Becker PS, Clapp DW, Hanenberg H, de Heredia CD, Kiem HP, Navarro S, Qasba P, Rio P, Schmidt M, Sevilla J, Verhoeyen E, Thrasher AJ, Bueren J: Gene therapy for Fanconi Anemia: one step closer to the clinic. Hum Gene Ther 2012, 23:141-144.
  • [3]Rosendor J, Bernstein R: Fanconi’s anemia–chromosome breakage studies in homozygotes and heterozygotes. Cancer Genet Cytoqenet 1988, 33:175-183.
  • [4]Hanenberg H, Batish SD, Pollok KE, Vieten L, Leurs C, Cooper RJ, Gottsche K, Haneline L, Clapp DW, Lobitz S, Williams DA, Auerbach AD: Phenotypic correction of primary Fanconi anemia T cells with retroviral vectors as a diagnostic tool. Exp Hematol 2002, 30:410-420.
  • [5]De Winter JP, Joenje H: The genetic and molecular basis of Fanconi anemia. Mutat Res 2009, 668:11-19.
  • [6]Vaz F, Hanenberg H, Schuster B, Barker K, Wiek C, Erven V, Neveling K, Eedt D, Kesterton I, Autore F, Fraternali F, Freund M, Hartmann L, Grimwade D, Roberts RG, Schaal H, Mohammed S, Rahman N, Schindler D, Mathew CG: Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat Genet 2010, 42:406-409.
  • [7]Stoepker C, Hain K, Schuster B, Hilhorst-Hofstee Y, Rooimans MA, Steltenpool J, Oostra AB, Eirich K, Korthof ET, Nieuwint AW, Jaspers NG, Bettecken T, Joenje H, Schindler D, Rouse J, de Winter JP: SLX4, a coordinator of structure-specific endonucleases, is mutated in a new Fanconi anemia subtype. Nat Genet 2011, 43:138-141.
  • [8]Kim Y, Lach FP, Desetty R, Hanenberg H, Auerbach AD, Smogorzewska A: Mutations of the SLX4 gene in Fanconi anemia. Nat Genet 2011, 43:142-146.
  • [9]Soulier J: Fanconi anemia. Hematol Am Soc Hematol Educ Program 2011, 2011:492-497.
  • [10]Gille JJ, Floor K, Kerkhoven L, Ameziane N, Joenje H, de Winter JP: Diagnosis of fanconi anemia: mutation analysis by multiplex ligation-dependent probe amplification and PCR-Based sanger sequencing. Anemia 2012, 2012:603253.
  • [11]Smith AR, Wagner JE: Current clinical management of Fanconi anemia. Expert Rev Hematol 2012, 5:513-522.
  • [12]Zheng Z, Geng J, Yao RE, Li C, Ying D, Shen Y, Ying L, Yu Y, Fu Q: Molecular defects identified by whole exome sequencing in a child with Fanconi anemia. Gene 2013, 530:295-300.
  • [13]Moldovan GL, D’Andrea AD: How the fanconi anemia pathway guards the genome. Annu Rev Genet 2009, 43:223-249.
  • [14]Chandrasekharappa SC, Lach FP, Kimble DC, Kamat A, Teer JK, Donovan FX, Flynn E, Sen SK, Thongthip S, Sanborn E, Smogorzewska A, Auerbach AD, Ostrander EA: Massively parallel sequencing, aCGH, and RNA-Seq technologies provide a comprehensive molecular diagnosis of Fanconi anemia. Blood 2013, 121:138-148.
  • [15]Kutler DI, Singh B, Satagopan J, Batish SD, Berwick M, Giampietro PF, Hanenberg H, Auerbach AD: A 20-year perspective on the international Fanconi Anemia Registry(IFAR). Blood 2003, 101:1249-1256.
  • [16]Myers K, Davies SM, Harris RE, Spunt SL, Smolarek T, Zimmerman S, McMasters R, Wagner L, Mueller R, Auerbach AD, Mehta PA: The clinical phenotype of children with Fanconi anemia caused by biallelic FANCD1/BRCA2 mutations. Pediatr Blood Cancer 2012, 58:462-465.
  • [17]Neveling K, Endt D, Hoehn H, Schindler D: Genotype-phenotype correlations in Fanconi anemia. Mutat Res 2009, 668:73-91.
  • [18]Seal S, Thompson D, Renwick A, Elliott A, Kelly P, Barfoot R, Chaqtai T, Jayatilake H, Ahmed M, Spanova K, North B, McGuffog L, Evans DG, Eccles D, Easton DF, Stratton MR, Rahman N, Breast Cancer Susceptibility Collaboration (UK): Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet 2006, 38:1239-1241.
  • [19]Rahman N, Seal S, Thompson D, Kelly P, Renwick A, Elliott A, Reid S, Spanova K, Barfoot R, Chagtai T, Jayatilake H, McGuffog L, Hanks S, Evans DG, Eccles D, Easton DF, Stratton MR, Breast Cancer Susceptibility Collaboration (UK): PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 2007, 39:165-167.
  • [20]Reid S, Schindler D, Hanenberg H, Barker K, Hanks S, Kalb R, Neveling K, Kelly P, Seal S, Freund M, Wurm M, Batish SD, Lach FP, Yetgin S, Neitzel H, Ariffin H, Tischkowitz M, Mathew CG, Auerbach AD, Rahman N: Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet 2007, 39:162-164.
  • [21]Wark L, Novak D, Sabbaghian N, Amrein L, Jangamreddy JR, Cheang M, Pouchet C, Aloyz R, Foulkes WD, Mai S, Tischkowitz M: Heterozygous mutations in the PALB2 hereditary breast cancer predisposition gene impact on the three-dimensional nuclear organization of patient-derived cell lines. Genes Chromosomes Cancer 2006, 52:480-494.
  • [22]Thompson ER, Doyle MA, Ryland GL, Rowley SM, Choong DY, Tothill RW, Campbell IG, Thorne H, kConFAB , Barnes DR, Li J, Philip GK, Antill YC, James PA, Trainer AH, Mitchell G: Exome sequencing identifies rare deleterious mutations in DNA repair genes FANCC and BLM as potential breast cancer susceptibility alleles. Plos Genet 2012, 8:e1002894.
  • [23]Levy-Lahad E, Friedman E: Cancer risks among BRCA1 and BRCA2 mutation carriers. Br J Cancer 2007, 96:11-15.
  • [24]Smetsers S, Muter J, Bristow C, Patel L, Chandler K, Bonney D, Wynn RF, Whetton AD, Will AM, Rockx D, Joenje H, Strathdee G, Shanks J, Klopocki E, Gille JJ, Dorsman J, Meyer S: Heterozygote FANCD2 mutations associated with childhood T Cell ALL and testicular seminoma. Fan Cancer 2012, 11:661-665.
  • [25]Koptyra M, Stoklosa T, Hoser G, Glodkowska-Mrowka E, Seferynska I, Klejman A, Blasiak J, Skorski T: Monoubiquitinated Fanconi anemia D2(FANCD2-Ub) is required for BCR-ABL1 kinase-induced leukemogenesis. Leukemia 2011, 25:1259-1267.
  • [26]Prieto-Remon I, Sanchez-Carrera D, Lopez-Duarte M, Richard C, Pipaon C: BIK (NBK) is a mediator of the sensitivity of Fanconi anaemia group C lymphoblastoid cell lines to interstrand DNA cross-linking agents. Biochem J 2012, 448:153-163.
  • [27]Sarkies P, Murat P, Phillips LG, Patel KJ, Balasubramanian S, Sale JE: FANCJ coordinates two pathways that maintain epigenetic stability at G-quadruplex DNA. Nucleic Acids Res 2012, 40:1485-1498.
  文献评价指标  
  下载次数:33次 浏览次数:15次