期刊论文详细信息
BMC Evolutionary Biology
The cost of antibiotic resistance depends on evolutionary history in Escherichia coli
Alex R Hall1  Daniel C Angst1 
[1] Department of Environmental Microbiology, Eawag, Dübendorf, Switzerland
关键词: Escherichia coli;    Experimental evolution;    Epistasis;    Antibiotic resistance;   
Others  :  1086698
DOI  :  10.1186/1471-2148-13-163
 received in 2013-05-14, accepted in 2013-07-25,  发布年份 2013
PDF
【 摘 要 】

Background

The persistence of antibiotic resistance depends on the fitness effects of resistance elements in the absence of antibiotics. Recent work shows that the fitness effect of a given resistance mutation is influenced by other resistance mutations on the same genome. However, resistant bacteria acquire additional beneficial mutations during evolution in the absence of antibiotics that do not alter resistance directly but may modify the fitness effects of new resistance mutations.

Results

We experimentally evolved rifampicin-resistant and sensitive Escherichia coli in a drug-free environment, before measuring the effects of new resistance elements on fitness in antibiotic-free conditions. Streptomycin-resistance mutations had small fitness effects in rifampicin-resistant genotypes that had adapted to antibiotic-free growth medium, compared to the same genotypes without adaptation. We observed a similar effect when resistance was encoded by a different mechanism and carried on a plasmid. Antibiotic-sensitive bacteria that adapted to the same conditions showed the same pattern for some resistance elements but not others.

Conclusions

Epistatic variation of costs of resistance can result from evolution in the absence of antibiotics, as well as the presence of other resistance mutations.

【 授权许可】

   
2013 Angst and Hall; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116014357347.pdf 910KB PDF download
Figure 3. 24KB Image download
Figure 2. 37KB Image download
Figure 1. 62KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Andersson DI, Hughes D: Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 2010, 8(4):260-271.
  • [2]Andersson DI, Levin BR: The biological cost of antibiotic resistance. Curr Opin Microbiol 1999, 2(5):489-493.
  • [3]Rozen DE, McGee L, Levin BR, Klugman KP: Fitness costs of fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 2007, 51(2):412-416.
  • [4]Salverda ML, Dellus E, Gorter FA, Debets AJ, van der Oost J, Hoekstra RF, Tawfik DS, de Visser JA: Initial mutations direct alternative pathways of protein evolution. PLoS Genet 2011, 7(3):e1001321.
  • [5]Trindade S, Sousa A, Xavier KB, Dionisio F, Ferreira MG, Gordo I: Positive epistasis drives the acquisition of multidrug resistance. PLoS Genet 2009, 5(7):e1000578.
  • [6]Ward H, Perron GG, MacLean RC: The cost of multiple drug resistance in Pseudomonas aeruginosa. J Evol Biol 2009, 22(5):997-1003.
  • [7]Weinreich DM, Watson RA, Chao L: Perspective: sign epistasis and genetic constraint on evolutionary trajectories. Evolution 2005, 59(6):1165-1174.
  • [8]Cohan FM, King EC, Zawadzki P: Amelioration of the deleterious pleiotropic effects of an adaptive mutation in Bacillus subtilis. Evolution 1994, 48(1):81-95.
  • [9]Kugelberg E, Lofmark S, Wretlind B, Andersson DI: Reduction of the fitness burden of quinolone resistance in Pseudomonas aeruginosa. J Antimicrob Chemother 2005, 55(1):22-30.
  • [10]Levin BR, Perrot V, Walker N: Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics 2000, 154(3):985-997.
  • [11]Paulander W, Maisnier-Patin S, Andersson DI: Multiple mechanisms to ameliorate the fitness burden of mupirocin resistance in Salmonella typhimurium. Mol Microbiol 2007, 64(4):1038-1048.
  • [12]Reynolds MG: Compensatory evolution in rifampin-resistant Escherichia coli. Genetics 2000, 156(4):1471-1481.
  • [13]Schrag SJ, Perrot V, Levin BR: Adaptation to the fitness costs of antibiotic resistance in Escherichia coli. Proc R Soc Lond B Biol Sci 1997, 264(1386):1287-1291.
  • [14]Silva RF, Mendonça SC, Carvalho LM, Reis AM, Gordo I, Trindade S, Dionisio F: Pervasive sign epistasis between conjugative plasmids and drug-resistance chromosomal mutations. PLoS Genet 2011, 7(7):e1002181.
  • [15]Weinreich DM, Delaney NF, DePristo MA, Hartl DL: Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 2006, 312(5770):111-114.
  • [16]Chou HH, Chiu HC, Delaney NF, Segrè D, Marx CJ: Diminishing returns epistasis among beneficial mutations decelerates adaptation. Science 2011, 332(6034):1190-1192.
  • [17]Khan AI, Dinh DM, Schneider D, Lenski RE, Cooper TF: Negative epistasis between beneficial mutations in an evolving bacterial population. Science 2011, 332(6034):1193-1196.
  • [18]Kvitek DJ, Sherlock G: Reciprocal sign epistasis between frequently experimentally evolved adaptive mutations causes a rugged fitness landscape. PLoS Genet 2011, 7(4):e1002056.
  • [19]Tenaillon O, Rodríguez-Verdugo A, Gaut RL, McDonald P, Bennett AF, Long AD, Gaut BS: The molecular diversity of adaptive convergence. Science 2012, 335(6067):457-461.
  • [20]Alekshun MN, Levy SB: Molecular mechanisms of antibacterial multidrug resistance. Cell 2007, 128(6):1037-1050.
  • [21]Maisnier-Patin S, Paulander W, Pennhag A, Andersson DI: Compensatory evolution reveals functional interactions between ribosomal proteins S12 L14 and L19. J Mol Biol 2007, 366(1):207-215.
  • [22]Ozaki M, Mizushima S, Nomura M: Identification and functional characterization of the protein controlled by the streptomycin-resistant locus in E. coli. Nature 1969, 222(5191):333-339.
  • [23]Scholz P, Haring V, Wittmann-Liebold B, Ashman K, Bagdasarian M, Scherzinger E: Complete nucleotide sequence and gene organization of the broad-host-range plasmid RSF1010. Gene 1989, 75(2):271-288.
  • [24]Hall AR: Genotype-by-environment interactions due to adaptation and antibiotic resistance in Escherichia coli. J Evol Biol 2013.
  • [25]Garibyan L, Huang T, Kim M, Wolff E, Nguyen A, Nguyen T, Diep A, Hu KB, Iverson A, Yang HJ, et al.: Use of the rpoB gene to determine the specificity of base substitution mutations on the Escherichia coli chromosome. DNA Repair 2003, 2(5):593-608.
  • [26]Thomason LC, Costantino N, Court DL: E. coli genome manipulation by P1 transduction. Curr Protoc Mol Biol 2007, 1.17:1-8.
  • [27]Chung CT, Niemela SL, Miller RH: One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A 1989, 86(7):2172-2175.
  • [28]Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, Hughes D, Andersson DI: Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog 2011, 7(7):e1002158.
  • [29]Lenski RE, Rose MR, Simpson SC, Tadler SC: Long-term experimental evolution in Escherichia coli 1. Adaptation and divergence during 2,000 generations. Am Nat 1991, 138(6):1315-1341.
  • [30]Fares MA, Ruiz-González MX, Moya A, Elena SF, Barrio E: Endosymbiotic bacteria-GroEL buffers against deleterious mutations. Nature 2002, 417(6887):398.
  • [31]Kerner MJ, Naylor DJ, Ishihama Y, Maier T, Chang HC, Stines AP, Georgopoulos C, Frishman D, Hayer-Hartl M, Mann M, et al.: Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 2005, 122(2):209-220.
  • [32]Tokuriki N, Tawfik DS: Chaperonin overexpression promotes genetic variation and enzyme evolution. Nature 2009, 459:668-675.
  • [33]Rutherford SL: Between genotype and phenotype: protein chaperones and evolvability. Nat Rev Genet 2003, 4(4):263-274.
  • [34]Maisnier-Patin S, Roth JR, Fredriksson A, Nyström T, Berg OG, Andersson DI: Genomic buffering mitigates the effects of deleterious mutations in bacteria. Nat Genet 2005, 37(12):1376-1379.
  • [35]Hall AR, MacLean RC: Epistasis buffers the fitness effects of rifampicin-resistance mutations in Pseudomonas aeruginosa. Evolution 2011, 65:2370-2379.
  • [36]Fares MA, Barrio E, Sabater-Munoz B, Moya A: The evolution of the heat-shock protein GroEL from Buchnera, the primary endosymbiont of aphids, is governed by positive selection. Mol Biol Evol 2002, 19(7):1162-1170.
  • [37]Tokuriki N, Stricher F, Schymkowitz J, Serrano L, Tawfik DS: The stability effects of protein mutations appear to be universally distributed. J Mol Biol 2007, 369(5):1318-1332.
  • [38]Gros PA, Tenaillon O: Selection for chaperone-like mediated genetic robustness at low mutation rate: impact of drift, epistasis and complexity. Genetics 2009, 182(2):555-564.
  • [39]de Visser JA, Hermisson J, Wagner GP, Ancel Meyers L, Bagheri-Chaichian H, Blanchard JL, Chao L, Cheverud JM, Elena SF, Fontana W, et al.: Perspective: evolution and detection of genetic robustness. Evolution 2003, 57(9):1959-1972.
  • [40]Wagner A: Robustness and evolvability in living systems. Princeton: Princeton University Press; 2005.
  • [41]Sanjuán R, Cuevas JM, Furió V, Holmes EC, Moya A: Selection for robustness in mutagenized RNA viruses. PLoS Genet 2007, 3(6):e93.
  • [42]Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, Darst SA: Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 2001, 104(6):901-912.
  • [43]Derewacz DK, Goodwin CR, McNees CR, McLean JA, Bachmann BO: Antimicrobial drug resistance affects broad changes in metabolomic phenotype in addition to secondary metabolism. Proc Natl Acad Sci U S A 2013, 110(6):2336-2341.
  • [44]Perkins AE, Nicholson WL: Uncovering new metabolic capabilities of Bacillus subtilis using phenotype profiling of rifampin-resistant rpoB mutants. J Bacteriol 2008, 190(3):807-814.
  • [45]Trindade S, Sousa A, Gordo I: Antibiotic resistance and stress in the light of Fisher's model. Evolution 2012, 66:3815-3824.
  • [46]Rodríguez-Verdugo A, Gaut BS, Tenaillon O: Evolution of Escherichia coli rifampicin resistance in an antibiotic-free environment during thermal stress. BMC Evol Biol 2013, 13:50. BioMed Central Full Text
  • [47]Travisano M, Lenski RE: Long-term experimental evolution in Escherichia coli. III. Variation among replicate populations in correlated responses to novel environments. Evolution 1995, 49:189-200.
  • [48]Ciofu O, Mandsberg LF, Bjarnsholt T, Wassermann T, Høiby N: Genetic adaptation of Pseudomonas aeruginosa during chronic lung infection of patients with cystic fibrosis: strong and weak mutators with heterogeneous genetic backgrounds emerge in mucA and/or lasR mutants. Microbiology 2010, 156:1108-1119.
  • [49]Huse HK, Kwon T, Zlosnik JE, Speert DP, Marcotte EM, Whiteley M: Parallel evolution in Pseudomonas aeruginosa over 39,000 generations in vivo. MBio 2010, 1(4):e00199-10.
  • [50]Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, D'Argenio DA, Miller SI, Ramsey BW, Speert DP, Moskowitz SM, et al.: Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 2006, 103(22):8487-8492.
  • [51]Comas I, Borrell S, Roetzer A, Rose G, Malla B, Kato-Maeda M, Galagan J, Niemann S, Gagneux S: Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet 2012, 44(1):106-112.
  文献评价指标  
  下载次数:35次 浏览次数:37次