期刊论文详细信息
BMC Systems Biology
An objective function exploiting suboptimal solutions in metabolic networks
Pamela A Silver1  Tami D Lieberman2  Edwin H Wintermute2 
[1] Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA;Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
关键词: Networks;    Metabolic flux analysis;    Variability;    Metabolism;   
Others  :  1142071
DOI  :  10.1186/1752-0509-7-98
 received in 2013-06-03, accepted in 2013-09-30,  发布年份 2013
PDF
【 摘 要 】

Background

Flux Balance Analysis is a theoretically elegant, computationally efficient, genome-scale approach to predicting biochemical reaction fluxes. Yet FBA models exhibit persistent mathematical degeneracy that generally limits their predictive power.

Results

We propose a novel objective function for cellular metabolism that accounts for and exploits degeneracy in the metabolic network to improve flux predictions. In our model, regulation drives metabolism toward a region of flux space that allows nearly optimal growth. Metabolic mutants deviate minimally from this region, a function represented mathematically as a convex cone. Near-optimal flux configurations within this region are considered equally plausible and not subject to further optimizing regulation. Consistent with relaxed regulation near optimality, we find that the size of the near-optimal region predicts flux variability under experimental perturbation.

Conclusion

Accounting for suboptimal solutions can improve the predictive power of metabolic FBA models. Because fluctuations of enzyme and metabolite levels are inevitable, tolerance for suboptimality may support a functionally robust metabolic network.

【 授权许可】

   
2013 Wintermute et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327211418968.pdf 1072KB PDF download
Figure 7. 71KB Image download
Figure 6. 60KB Image download
Figure 5. 50KB Image download
Figure 4. 50KB Image download
Figure 3. 71KB Image download
Figure 2. 144KB Image download
Figure 1. 69KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Joyce AR, Palsson BØ: Toward whole cell modeling and simulation: comprehensive functional genomics through the constraint-based approach. Prog Drug Res 2007, 64(265):267-309.
  • [2]Parker GA, Smith JM: Optimality theory in evolutionary biology. Nature 1990, 348:27-33.
  • [3]Palsson B: Systems biology : properties of reconstructed networks. Cambridge; New York: Cambridge University Press; 2006. [Illustrated, reprint]
  • [4]Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BØ: A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 2007, 3:121.
  • [5]Beard DA, Babson E, Curtis E, Qian H: Thermodynamic constraints for biochemical networks. J Theor Biol 2004, 228:327-333.
  • [6]Covert MW, Palsson BØ: Constraints-based models: regulation of gene expression reduces the steady-state solution space. J Theor Biol 2003, 221:309-325.
  • [7]Zomorrodi AR, Suthers PF, Ranganathan S, Maranas CD: Mathematical optimization applications in metabolic networks. Metab Eng 2012, 14:672-686.
  • [8]Segrè D, DeLuna A, Church GM, Kishony R: Modular epistasis in yeast metabolism. Nat Genet 2004, 37:77-83.
  • [9]Motter AE, Gulbahce N, Almaas E, Barabási AL: Predicting synthetic rescues in metabolic networks. Mol Syst Biol 2008, 4:168.
  • [10]Wintermute EH, Silver PA: Emergent cooperation in microbial metabolism. Mol Syst Biol 2010, 6:407.
  • [11]Klitgord N, Segrè D: Environments that induce synthetic microbial ecosystems. PLoS Comput Biol 2010, 6:e1001002.
  • [12]Phalakornkule C, Lee S, Zhu T, Koepsel R, Ataai MM, Grossmann IE, Domach MM: A MILP-based flux alternative generation and NMR experimental design strategy for metabolic engineering. Metab Eng 2001, 3:124-137.
  • [13]Fischer E, Sauer U: Large-scale in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism. Nat Genet 2005, 37:636-640.
  • [14]Lestas I, Vinnicombe G, Paulsson J: Fundamental limits on the suppression of molecular fluctuations. Nature 2010, 467:174-178.
  • [15]Segrè D, Vitkup D, Church GM: Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci U S A 2002, 99:15112-15117.
  • [16]Boyd SP, Vandenberghe L: Convex optimization. Cambridge, UK; New York: Cambridge University Press; 2004. [Illustrated, reprint]
  • [17]Covert MW, Knight EM, Reed JL, Herrgard MJ, Palsson BØ: Integrating high-throughput and computational data elucidates bacterial networks. Nature 2004, 429:92-96.
  • [18]Hoppe A, Hoffmann S, Holzhütter H-GG: Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks. BMC Syst Biol 2007, 1:23.
  • [19]Noor E, Lewis NE, Milo R: A proof for loop-law constraints in stoichiometric metabolic networks. BMC Syst Biol 2012, 6:140.
  • [20]Kuepfer L: Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res 2005, 15:1421-1430.
  • [21]Kim J, Reed JL: RELATCH: relative optimality in metabolic networks explains robust metabolic and regulatory responses to perturbations. Genome Biol 2012, 13:R78.
  • [22]Segrè D, Zucker J, Katz J, Lin X, D'haeseleer P, Rindone WP, Kharchenko P, Nguyen DH, Wright MA, Church GM: From annotated genomes to metabolic flux models and kinetic parameter fitting. OMICS 2003, 7:301-316.
  • [23]Nakahigashi K, Toya Y, Ishii N, Soga T, Hasegawa M, Watanabe H, Takai Y, Honma M, Mori H, Tomita M: Systematic phenome analysis of Escherichia coli multiple-knockout mutants reveals hidden reactions in central carbon metabolism. Mol Syst Biol 2009, 5:306.
  • [24]Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H: Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the keio collection. Mol Syst Biol 2006, 2:2006. 0008
  • [25]Ishii N, Nakahigashi K, Baba T, Robert M, Soga T, Kanai A, Hirasawa T, Naba M, Hirai K, Hoque A: Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science 2007, 316:593.
  • [26]Meng X-L, Rosenthal R, Rubin DB: Comparing correlated correlation coefficients. Psychol Bull 1992, 111:172.
  • [27]Schuetz R, Kuepfer L, Sauer U: Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 2007, 3:119.
  • [28]Zhao J, Baba T, Mori H, Shimizu K: Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13 C-labeling experiments and the measurement of enzyme activities. Appl Microbiol Biotechnol 2004, 64:91-98.
  • [29]Mustafa G, Migita CT, Ishikawa Y, Kobayashi K, Tagawa S, Yamada M: Menaquinone as well as ubiquinone as a bound quinone crucial for catalytic activity and intramolecular Electron Transfer in Escherichia coli membrane-bound glucose dehydrogenase. J Biol Chem 2008, 283:28169-28175.
  • [30]Schuetz R, Zamboni N, Zampieri M, Heinemann M, Sauer U: Multidimensional optimality of microbial metabolism. Science 2012, 336:601-604.
  • [31]Sariyar B, Perk S, Akman U, Hortaçsu A: Monte Carlo sampling and principal component analysis of flux distributions yield topological and modular information on metabolic networks. J Theor Biol 2006, 242:389.
  • [32]Wiback SJ, Famili I, Greenberg HJ, Palsson BØ: Monte Carlo sampling can be used to determine the size and shape of the steady-state flux space. J Theor Biol 2004, 228:437-447.
  • [33]Andersen ED, Roos C, Terlaky T: On implementing a primal-dual interior-point method for conic quadratic optimization. Math Program 2003, 95:249-277.
  • [34]Matheiss TH, Rubin DS: A survey and comparison of methods for finding all vertices of convex polyhedral sets. Mathematics of operations research 1980, 5:167-185.
  • [35]Bordbar A, Lewis NE, Schellenberger J, Palsson BØ, Jamshidi N: Insight into human alveolar macrophage and M. Tuberculosis interactions via metabolic reconstructions. Mol Syst Biol 2010, 6:422.
  • [36]Kaufman DE, Smith RL: Direction choice for accelerated convergence in hit-and-run sampling. Oper Res 1998, 46:84-95.
  • [37]van Rijsewijk Bart RBH, Nanchen A, Nallet S, Kleijn RJ, Sauer U: Large-scale 13C-flux analysis reveals distinct transcriptional control of respiratory and fermentative metabolism in Escherichia coli. Mol Syst Biol 2011, 7:1-12.
  • [38]Knorr AL, Jain R, Srivastava R: Bayesian-based selection of metabolic objective functions. Bioinformatics 2007, 23:351-357.
  • [39]Gianchandani EP, Oberhardt MA, Burgard AP, Maranas CD, Papin JA: Predicting biological system objectives de novo from internal state measurements. BMC Bioinformatics 2008, 9:43.
  • [40]Oh Y, Lee D, Lee S: Multiobjective flux balancing using the NISE method for metabolic network analysis. Biotechnol Prog 2009, 25:999-1008.
  • [41]Zomorrodi AR, Maranas CD: OptCom: a multi-level optimization Framework for the metabolic modeling and analysis of microbial communities. PLoS Comput Biol 2012, 8:e1002363.
  • [42]Bull JJ, Wang IN: Optimality models in the age of experimental evolution and genomics. J Evol Biol 2010, 23:1820-1838.
  • [43]Pérez-Escudero A, Rivera-Alba M, de Polavieja GG: Structure of deviations from optimality in biological systems. Proc Natl Acad Sci USA 2009, 106:20544-20549.
  • [44]Kitano H: Biological robustness. Nat Rev Genet 2004, 5:826-837.
  • [45]Maltsev N, Glass EM, Ovchinnikova G, Gu Z: Molecular mechanisms involved in robustness of yeast central metabolism against null mutations. J Biochem 2005, 137:177-187.
  • [46]Marland E, Prachumwat A, Maltsev N, Gu Z, Li W-HH: Higher gene duplicabilities for metabolic proteins than for nonmetabolic proteins in yeast and E. coli. J Mol Evol 2004, 59:806-814.
  • [47]Kitami T, Nadeau JH: Biochemical networking contributes more to genetic buffering in human and mouse metabolic pathways than does gene duplication. Nat Genet 2002, 32:191-194.
  • [48]Fell D: Understanding the control of metabolism. London/Miami: Portland Press Ltd; 1997.
  • [49]Springer M, Weissman JS, Kirschner MW: A general lack of compensation for gene dosage in yeast. Mol Syst Biol 2010, 6:1-8.
  • [50]Taniguchi Y, Choi PJ, Li GW, Chen H, Babu M, Hearn J, Emili A, Xie XS: Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 2010, 329:533-538.
  • [51]Vilar JMG, Guet CC, Leibler S: Modeling network dynamics: the lac operon, a case study. J Cell Biol 2003, 161:471-476.
  • [52]Veening J-WW, Smits WK, Kuipers OP: Bistability, epigenetics, and bet-hedging in bacteria. Annu Rev Microbiol 2008, 62:193-210.
  • [53]Thattai M, Van Oudenaarden A: Stochastic gene expression in fluctuating environments. Genetics 2004, 167:523.
  • [54]Süel GURM, Kulkarni RP, Dworkin J, Garcia-Ojalvo J, Elowitz MB: Tunability and noise dependence in differentiation dynamics. Science 2007, 315:1716-1719.
  • [55]Lee HH, Molla MN, Cantor CR, Collins JJ: Bacterial charity work leads to population-wide resistance. Nature 2010, 467:82-85.
  • [56]Ptashne M: A genetic switch : phage lambda revisited. 3rd edition. Cold Spring Harbor, N.Y.: CSHL Press; 2004.
  • [57]Spencer SL, Sorger PK: Measuring and modeling apoptosis in single cells. Cell 2011, 144:926-939.
  • [58]Hanna J, Saha K, Pando B, van Zon J, Lengner CJ, Creyghton MP, van Oudenaarden A, Jaenisch R: Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 2009, 462:595-601.
  • [59]Tyagi S: E. coli, what a noisy bug. Science 2010, 329:518.
  • [60]Okumoto S: Imaging approach for monitoring cellular metabolites and ions using genetically encoded biosensors. Curr Opin Biotechnol 2010, 21:45-54.
  • [61]Balázsi G, van Oudenaarden A, Collins JJ: Cellular decision making and biological noise: from microbes to mammals. Cell 2011, 144:910-925.
  • [62]Feist AM, Palsson BØ: The biomass objective function. Curr Opin Microbiol 2010, 13:344-349.
  • [63]Gass SI: Linear programming : methods and applications. 5th edition. New York: Courier Dover Publications; 1985.
  • [64]Kozlov MK, Tarasov SP, Khachiyan LG: Polynomial solvability of convex quadratic programming. Soviet Mathematics Doklady 1979, 20:1108-1111.
  文献评价指标  
  下载次数:71次 浏览次数:7次