学位论文详细信息
Cryopreservation effects on a pancreatic substitute comprised of beta cells or recombinant myoblasts encapsulated in non-adhesive and adhesive alginate hydrogels
Metabolic flux analysis;RGD-modified alginate;Adhesion;Tissue engineering
Ahmad, Hajira Fatima ; Sambanis, Athanassios Biomedical Engineering Brockbank, Kelvin Simpson, Nicholas Temenoff, Johnna ; Sambanis, Athanassios
University:Georgia Institute of Technology
Department:Biomedical Engineering
关键词: Metabolic flux analysis;    RGD-modified alginate;    Adhesion;    Tissue engineering;   
Others  :  https://smartech.gatech.edu/bitstream/1853/48968/1/ahmad_hajira_f_201208_phd.pdf
美国|英语
来源: SMARTech Repository
PDF
【 摘 要 】

For clinical translation of a pancreatic substitute, long-term storage is essential, and cryopreservation is a promising means to achieve this goal. The two main cryopreservation methods are conventional freezing and vitrification, or ice-free cryopreservation. However, as both methods have their potential drawbacks for cryopreservation of a pancreatic substitute, they must be systematically evaluated in order to determine the appropriate method of cryopreservation. Furthermore, previous studies have indicated benefits to encapsulation in 3-D adhesive environments for pancreatic substitutes and that adhesion affects cell response to cryopreservation. Thus, the overall goal of this thesis was to investigate cryopreservation effects on model pancreatic substitutes consisting of cells encapsulated in non-adhesive and adhesive 3-D alginate hydrogels. Murine insulinoma betaTC-tet cells encapsulated in unmodified alginate hydrogels were chosen as the model pancreatic substitute in a non-adhesive 3-D environment. Murine myoblast C2C12 cells, stably transfected to secrete insulin, encapsulated in partially oxidized, RGD-modified alginate hydrogels were chosen as the model pancreatic substitute in a 3-D adhesive environment. With respect to cryopreservation effects on intermediary metabolism of betaTC-tet cells encapsulated in unmodified alginate, results indicate that relative carbon flow through the tricarboxylic acid cycle pathways examined is unaffected by cryopreservation. Additionally, insulin secretory function is maintained in Frozen constructs. However, vitrification by a cryopreservation cocktail referred to as DPS causes impairment in insulin secretion from encapsulated betaTC-tet cells, possibly due to a defect in late-stage insulin secretion. Results from Stable C2C12 cells encapsulated in RGD vs. RGE-alginate indicate that up to one day post-warming, cell-matrix interactions do not affect cellular response to cryopreservation after vitrification or freezing. Although there are differences in metabolic activity and insulin secretion immediately post-warming for DPS-vitrified RGD-encapsulated Stable C2C12 cells relative to Fresh controls, metabolic activity and insulin secretion are maintained at all time points assayed for Frozen constructs. Overall, due to results comparable to Fresh controls and simplicity of procedure, conventional freezing is appropriate for cryopreservation of betaTC-tet cells encapsulated in unmodified alginate or Stable C2C12 cells encapsulated in partially oxidized, RGD-modified alginate.

【 预 览 】
附件列表
Files Size Format View
Cryopreservation effects on a pancreatic substitute comprised of beta cells or recombinant myoblasts encapsulated in non-adhesive and adhesive alginate hydrogels 2255KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:3次