期刊论文详细信息
BMC Immunology
Transcriptional profiling of the spleen in progressive visceral leishmaniasis reveals mixed expression of type 1 and type 2 cytokine-responsive genes
Peter C Melby7  Andrew Pekosz1  Michael Cappello5  Audrie A Medina6  Mandakini J Patel2  Mark Band8  Alvaro Hernandez8  E Yaneth Osorio4  Bruno L Travi3  Omar A Saldarriaga4  Claudia M Espitia2 
[1] Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA;Department of Medicine, Cancer Therapy and Research Center, Institute for Drug Development, The University of Texas Health Science Center, San Antonio, Texas, USA;Center for Tropical Diseases and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, USA;Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA;Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA;Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA;Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA;Roy J. Carver Biotechnology Center, University of Illinois, Urbana, Illinois, USA
关键词: Interleukin-4;    Interferon-gamma;    Microarray;    Transcriptional profiling;    Visceral leishmaniasis;    Leishmania donovani;    Hamster;   
Others  :  1089867
DOI  :  10.1186/s12865-014-0038-z
 received in 2014-04-09, accepted in 2014-09-15,  发布年份 2014
PDF
【 摘 要 】

Background

The Syrian golden hamster (Mesocricetus aureus) has been used as a model to study infections caused by a number of human pathogens. Studies of immunopathogenesis in hamster infection models are challenging because of the limited availability of reagents needed to define cellular and molecular determinants.

Results

We sequenced a hamster cDNA library and developed a first-generation custom cDNA microarray that included 5131 unique cDNAs enriched for immune response genes. We used this microarray to interrogate the hamster spleen response to Leishmania donovani, an intracellular protozoan that causes visceral leishmaniasis. The hamster model of visceral leishmaniasis is of particular interest because it recapitulates clinical and immunopathological features of human disease, including cachexia, massive splenomegaly, pancytopenia, immunosuppression, and ultimately death. In the microarray a differentially expressed transcript was identified as having at least a 2-fold change in expression between uninfected and infected groups and a False Discovery Rate of <5%. Following a relatively silent early phase of infection (at 7 and 14 days post-infection only 8 and 24 genes, respectively, were differentially expressed), there was dramatic upregulation of inflammatory and immune-related genes in the spleen (708 differentially expressed genes were evident at 28 days post-infection). The differentially expressed transcripts included genes involved in inflammation, immunity, and immune cell trafficking. Of particular interest there was concomitant upregulation of the IFN-γ and interleukin (IL)-4 signaling pathways, with increased expression of a battery of IFN-γ- and IL-4-responsive genes. The latter included genes characteristic of alternatively activated macrophages.

Conclusions

Transcriptional profiling was accomplished in the Syrian golden hamster, for which a fully annotated genome is not available. In the hamster model of visceral leishmaniasis, a robust and functional IFN-γ response did not restrain parasite load and progression of disease. This supports the accumulating evidence that macrophages are ineffectively activated to kill the parasite. The concomitant expression of IL-4/IL-13 and their downstream target genes, some of which were characteristic of alternative macrophage activation, are likely to contribute to this. Further dissection of mechanisms that lead to polarization of macrophages toward a permissive state is needed to fully understand the pathogenesis of visceral leishmaniasis.

【 授权许可】

   
2014 Espitia et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128152600507.pdf 1752KB PDF download
Figure 4. 53KB Image download
Figure 3. 73KB Image download
Figure 2. 34KB Image download
Figure 1. 128KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Hommel M, Jaffe CL, Travi B, Milon G: Experimental models for leishmaniasis and for testing anti-leishmanial vaccines. Ann Trop Med Parasitol 1995, 89(Suppl 1):55-73.
  • [2]Requena JM, Soto M, Doria MD, Alonso C: Immune and clinical parameters associated with Leishmania infantum infection in the golden hamster model. Vet Immunol Immunopathol 2000, 76(3–4):269-281.
  • [3]Travi BL, Osorio Y, Saravia NG: The inflammatory response promotes cutaneous metastasis in hamsters infected with Leishmania (Viannia) panamensis. J Parasitol 1996, 82(3):454-457.
  • [4]Martinez JE, Travi BL, Valencia AZ, Saravia NG: Metastatic capability of Leishmania (Viannia) panamensis and Leishmania (Viannia) guyanensis in golden hamsters. J Parasitol 1991, 77(5):762-768.
  • [5]Melby PC, Chandrasekar B, Zhao W, Coe JE: The hamster as a model of human visceral leishmaniasis: progressive disease and impaired generation of nitric oxide in the face of a prominent Th1-like response. J Immunol 2001, 166:1912-1920.
  • [6]Melby PC, Tryon VV, Chandrasekar B, Freeman GL: Cloning of Syrian hamster (Mesocricetus auratus) cytokine cDNAs and analysis of cytokine mRNA expression in experimental visceral leishmaniasis. Infect Immun 1998, 66(5):2135-2142.
  • [7]Bilate AM, Salemi VM, Ramires FJ, de Brito T, Silva AM, Umezawa ES, Mady C, Kalil J, Cunha-Neto E: The Syrian hamster as a model for the dilated cardiomyopathy of Chagas’ disease: a quantitative echocardiographical and histopathological analysis. Microbes Infect 2003, 5(12):1116-1124.
  • [8]Rigothier MC, Khun H, Tavares P, Cardona A, Huerre M, Guillen N: Fate of Entamoeba histolytica during establishment of amoebic liver abscess analyzed by quantitative radioimaging and histology. Infect Immun 2002, 70(6):3208-3215.
  • [9]Kajdacsy-Balla A, Howeedy A, Bagasra O: Syphilis in the Syrian hamster. A model of human venereal and congenital syphilis. Am J Pathol 1987, 126(3):599-601.
  • [10]Haake DA: Hamster model of leptospirosis. Curr Protoc Microbiol 2006, ᅟ:ᅟ. Chapter 12:Unit 12E 12
  • [11]Campen MJ, Milazzo ML, Fulhorst CF, Obot Akata CJ, Koster F: Characterization of shock in a hamster model of hantavirus infection. Virology 2006, 356(1–2):45-49.
  • [12]Paessler S, Aguilar P, Anishchenko M, Wang HQ, Aronson J, Campbell G, Cararra AS, Weaver SC: The hamster as an animal model for eastern equine encephalitis–and its use in studies of virus entrance into the brain. J Infect Dis 2004, 189(11):2072-2076.
  • [13]Tesh RB, Guzman H, da Rosa AP, Vasconcelos PF, Dias LB, Bunnell JE, Zhang H, Xiao SY: Experimental yellow fever virus infection in the Golden Hamster (Mesocricetus auratus). I. Virologic, biochemical, and immunologic studies. J Infect Dis 2001, 183(10):1431-1436.
  • [14]Xiao SY, Zhang H, Guzman H, Tesh RB: Experimental yellow fever virus infection in the Golden hamster (Mesocricetus auratus). II. Pathology. J Infect Dis 2001, 183(10):1437-1444.
  • [15]Xiao SY, Guzman H, Zhang H, da Rosa AP T, Tesh RB: West Nile virus infection in the golden hamster (Mesocricetus auratus): a model for West Nile encephalitis. Emerg Infect Dis 2001, 7(4):714-721.
  • [16]Wong KT, Grosjean I, Brisson C, Blanquier B, Fevre-Montange M, Bernard A, Loth P, Georges-Courbot MC, Chevallier M, Akaoka H, Marianneau P, Lam SK, Wild TF, Deubel V: A golden hamster model for human acute Nipah virus infection. Am J Pathol 2003, 163(5):2127-2137.
  • [17]Held MR, Bungiro RD, Harrison LM, Hamza I, Cappello M: Dietary iron content mediates hookworm pathogenesis in vivo. Infect Immun 2006, 74(1):289-295.
  • [18]Perez LE, Chandrasekar B, Saldarriaga OA, Zhao W, Arteaga LT, Travi BL, Melby PC: Reduced nitric oxide synthase 2 (NOS2) promoter activity in the Syrian hamster renders the animal functionally deficient in NOS2 activity and unable to control an intracellular pathogen. J Immunol 2006, 176(9):5519-5528.
  • [19]Kenney RT, Sacks DL, Gam AA, Murray HW, Sundar S: Splenic cytokine responses in Indian kala-azar before and after treatment. J Infect Dis 1998, 177(3):815-818.
  • [20]Karp CL, El-Safi SH, Wynn TA, Satti MM, Kordofani AM, Hashim FA, Hag-Ali M, Neva FA, Nutman TB, Sacks DL: In vivo cytokine profiles in patients with kala-azar. Marked elevation of both interleukin-10 and interferon-gamma [see comments]. J Clin Invest 1993, 91(4):1644-1648.
  • [21]Osorio Y, Travi BL, Renslo AR, Peniche AG, Melby PC: Identification of small molecule lead compounds for visceral leishmaniasis using a novel ex vivo splenic explant model system. PLoS Negl Trop Dis 2011, 5(2):e962.
  • [22]Osorio EY, Zhao W, Espitia C, Saldarriaga O, Hawel L, Byus CV, Travi BL, Melby PC: Progressive visceral leishmaniasis is driven by dominant parasite-induced STAT6 activation and STAT6-dependent host arginase 1 expression. PLoS Pathog 2012, 8(1):e1002417.
  • [23]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215(3):403-410.
  • [24]Espitia CM, Zhao W, Saldarriaga OA, Osorio Y, Harrison LM, Cappello M, Travi BL, Melby PC: Duplex real-time reverse transcriptase PCR to determine cytokine mRNA expression in a hamster model of New World cutaneous leishmaniasis. BMC Immunol 2010, 11(1):31. BioMed Central Full Text
  • [25]Hotelling H: Analysis of a complex of statistical variables into principal components. J Educ Psychol 1933, 24(7):498-520.
  • [26]Downey T: Analysis of a multifactor microarray study using Partek genomics solution. Methods Enzymol 2006, 411:256-270.
  • [27]Rodriguez NE, Chang HK, Wilson ME: Novel program of macrophage gene expression induced by phagocytosis of Leishmania chagasi. Infect Immun 2004, 72(4):2111-2122.
  • [28]Buates S, Matlashewski G: General suppression of macrophage gene expression during Leishmania donovani infection. J Immunol 2001, 166(5):3416-3422.
  • [29]Chaussabel D, Semnani RT, McDowell MA, Sacks D, Sher A, Nutman TB: Unique gene expression profiles of human macrophages and dendritic cells to phylogenetically distinct parasites. Blood 2003, 102(2):672-681.
  • [30]Price HP, Paape D, Hodgkinson MR, Farrant K, Doehl J, Stark M, Smith DF: The Leishmania major BBSome subunit BBS1 is essential for parasite virulence in the mammalian host. Mol Microbiol 2013, 90(3):597-611.
  • [31]Gibbons FD, Roth FP: Judging the quality of gene expression-based clustering methods using gene annotation. Genome Res 2002, 12(10):1574-1581.
  • [32]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25(1):25-29.
  • [33]Wang J, Duncan D, Shi Z, Zhang B: WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res 2013, 41:W77-W83. Web Server issue
  • [34]Zhang B, Kirov S, Snoddy J: WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 2005, 33:W741-W748. Web Server issue)
  • [35]Kelder T, van Iersel MP, Hanspers K, Kutmon M, Conklin BR, Evelo CT, Pico AR: WikiPathways: building research communities on biological pathways. Nucleic Acids Res 2012, 40(Database issue):D1301-D1307.
  • [36]Ehrt S, Schnappinger D, Bekiranov S, Drenkow J, Shi S, Gingeras TR, Gaasterland T, Schoolnik G, Nathan C: Reprogramming of the macrophage transcriptome in response to interferon-gamma and Mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase. J Exp Med 2001, 194(8):1123-1140.
  • [37]Kaye P, Scott P: Leishmaniasis: complexity at the host-pathogen interface. Nat Rev Microbiol 2011, 9(8):604-615.
  • [38]Gidwani K, Jones S, Kumar R, Boelaert M, Sundar S: Interferon-gamma release assay (modified QuantiFERON) as a potential marker of infection for Leishmania donovani, a proof of concept study. PLoS Negl Trop Dis 2011, 5(4):e1042.
  • [39]Green SJ, Nacy CA, Meltzer MS: Cytokine-induced synthesis of nitrogen oxides in macrophages: a protective host response to Leishmania and other intracellular pathogens. J Leukoc Biol 1991, 50(1):93-103.
  • [40]Liew FY, Li Y, Moss D, Parkinson C, Rogers MV, Moncada S: Resistance to Leishmania major infection correlates with the induction of nitric oxide synthase in murine macrophages. Eur J Immunol 1991, 21(12):3009-3014.
  • [41]Saldarriaga OA, Travi BL, Ghosh Choudhury G, Melby PC: Identification of hamster inducible nitric oxide synthase (iNOS) promoter sequences that influence basal and inducible iNOS expression. J Leukoc Biol 2012, ᅟ:ᅟ.
  • [42]Paludan SR, Ellermann-Eriksen S, Lovmand J, Mogensen SC: Interleukin-4-mediated inhibition of nitric oxide production in interferon-gamma-treated and virus-infected macrophages. Scand J Immunol 1999, 49(2):169-176.
  • [43]Harada H, Fujita T, Miyamoto M, Kimura Y, Maruyama M, Furia A, Miyata T, Taniguchi T: Structurally similar but functionally distinct factors, IRF-1 and IRF-2, bind to the same regulatory elements of IFN and IFN-inducible genes. Cell 1989, 58(4):729-739.
  • [44]MacKenzie CR, Heseler K, Muller A, Daubener W: Role of indoleamine 2,3-dioxygenase in antimicrobial defence and immuno-regulation: tryptophan depletion versus production of toxic kynurenines. Curr Drug Metab 2007, 8(3):237-244.
  • [45]Pfefferkorn ER: Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proc Natl Acad Sci U S A 1984, 81(3):908-912.
  • [46]Schmidt SK, Muller A, Heseler K, Woite C, Spekker K, MacKenzie CR, Daubener W: Antimicrobial and immunoregulatory properties of human tryptophan 2,3-dioxygenase. Eur J Immunol 2009, 39(10):2755-2764.
  • [47]Makala LH, Baban B, Lemos H, El-Awady AR, Chandler PR, Hou DY, Munn DH, Mellor AL: Leishmania major attenuates host immunity by stimulating local indoleamine 2,3-dioxygenase expression. J Infect Dis 2011, 203(5):715-725.
  • [48]Donovan MJ, Tripathi V, Favila MA, Geraci NS, Lange MC, Ballhorn W, McDowell MA: Indoleamine 2,3-dioxygenase (IDO) induced by Leishmania infection of human dendritic cells. Parasite Immunol 2012, 34(10):464-472.
  • [49]Gangneux JP, Poinsignon Y, Donaghy L, Amiot L, Tarte K, Mary C, Robert-Gangneux F: Indoleamine 2,3-dioxygenase activity as a potential biomarker of immune suppression during visceral leishmaniasis.Innate Immun 2013, ᅟ:ᅟ.
  • [50]Hailu A, van der Poll T, Berhe N, Kager PA: Elevated plasma levels of interferon (IFN)-gamma, IFN-gamma inducing cytokines, and IFN-gamma inducible CXC chemokines in visceral leishmaniasis. Am J Trop Med Hyg 2004, 71(5):561-567.
  • [51]Rosas LE, Barbi J, Lu B, Fujiwara Y, Gerard C, Sanders VM, Satoskar AR: CXCR3−/− mice mount an efficient Th1 response but fail to control Leishmania major infection. Eur J Immunol 2005, 35(2):515-523.
  • [52]Barbi J, Oghumu S, Rosas LE, Carlson T, Lu B, Gerard C, Lezama-Davila CM, Satoskar AR: Lack of CXCR3 delays the development of hepatic inflammation but does not impair resistance to Leishmania donovani. J Infect Dis 2007, 195(11):1713-1717.
  • [53]Shenoy AR, Kim BH, Choi HP, Matsuzawa T, Tiwari S, MacMicking JD: Emerging themes in IFN-gamma-induced macrophage immunity by the p47 and p65 GTPase families. Immunobiology 2007, 212(9–10):771-784.
  • [54]Liesenfeld O, Parvanova I, Zerrahn J, Han SJ, Heinrich F, Munoz M, Kaiser F, Aebischer T, Buch T, Waisman A, Reichmann G, Utermöhlen O, von Stebut E, von Loewenich FD, Bogdan C, Specht S, Saeftel M, Hoerauf A, Mota MM, Könen-Waisman S, Kaufmann SH, Howard JC: The IFN-gamma-inducible GTPase, Irga6, protects mice against Toxoplasma gondii but not against Plasmodium berghei and some other intracellular pathogens. PLoS One 2011, 6(6):e20568.
  • [55]Sacks D, Noben-Trauth N: The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2002, 2(11):845-858.
  • [56]Kaye PM, Curry AJ, Blackwell JM: Differential production of Th1- and Th2-derived cytokines does not determine the genetically controlled or vaccine-induced rate of cure in murine visceral leishmaniasis. J Immunol 1991, 146(8):2763-2770.
  • [57]Murray HW, Tsai CW, Liu J, Ma X: Visceral Leishmania donovani infection in interleukin-13−/− mice. Infect Immun 2006, 74(4):2487-2490.
  • [58]McFarlane E, Carter KC, McKenzie AN, Kaye PM, Brombacher F, Alexander J: Endogenous IL-13 plays a crucial role in liver granuloma maturation during Leishmania donovani infection, independent of IL-4Ralpha-responsive macrophages and neutrophils. J Infect Dis 2011, 204(1):36-43.
  • [59]Nylen S, Maurya R, Eidsmo L, Manandhar KD, Sundar S, Sacks D: Splenic accumulation of IL-10 mRNA in T cells distinct from CD4 + CD25+ (Foxp3) regulatory T cells in human visceral leishmaniasis. J Exp Med 2007, 204(4):805-817.
  • [60]Babaloo Z, Kaye PM, Eslami MB: Interleukin-13 in Iranian patients with visceral leishmaniasis: relationship to other Th2 and Th1 cytokines. Trans R Soc Trop Med Hyg 2001, 95(1):85-88.
  • [61]Sundar S, Reed SG, Sharma S, Mehrotra A, Murray HW: Circulating T helper 1 (Th1) cell- and Th2 cell-associated cytokines in Indian patients with visceral leishmaniasis. Am J Trop Med Hyg 1997, 56(5):522-525.
  • [62]Lefevre L, Lugo-Villarino G, Meunier E, Valentin A, Olagnier D, Authier H, Duval C, Dardenne C, Bernad J, Lemesre JL, Auwerx J, Neyrolles O, Pipy B, Coste A: The C-type lectin receptors dectin-1, MR, and SIGNR3 contribute both positively and negatively to the macrophage response to Leishmania infantum. Immunity 2013, 38(5):1038-1049.
  • [63]Sacks DL, Melby PC: Animal models for the analysis of immune responses to leishmaniasis.Curr Protoc Immunol 2001, ᅟ:ᅟ. Chapter 19:Unit 19 12.
  • [64]Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG: Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 2010, 8(6):e1000412.
  • [65]Bonaldo MF, Lennon G, Soares MB: Normalization and subtraction: two approaches to facilitate gene discovery. Genome Res 1996, 6(9):791-806.
  • [66]Kumar CG, LeDuc R, Gong G, Roinishivili L, Lewin HA, Liu L: ESTIMA, a tool for EST management in a multi-project environment. BMC Bioinformatics 2004, 5:176. BioMed Central Full Text
  • [67]Quackenbush J: Microarray data normalization and transformation. Nat Genet 2002, 32(Suppl):496-501.
  • [68]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Series B (Methodological) 1995, 57(1):289-300.
  文献评价指标  
  下载次数:1次 浏览次数:5次