BMC Microbiology | |
On the influence of the culture conditions in bacterial antifouling bioassays and biofilm properties: Shewanella algae, a case study | |
José J Fernández1  Víctor S Martín1  Manuel Norte1  Roberto Dorta-Guerra4  Araceli Morales5  Alberto Hernández-Creus6  Alejandro González-Orive2  Alberto J Martín-Rodríguez3  | |
[1] Institute for Bio-Organic Chemistry “Antonio González”, Center for Biomedical Research of the Canary Islands (CIBICAN), University of La Laguna, Avenida Astrofísico Francisco Sánchez 2, La Laguna, Tenerife 38206, Spain;Department of Physical Chemistry, University of La Laguna, Avenida Astrofísico Francisco Sánchez 1, La Laguna, Tenerife 38206, Spain;Oceanic Platform of the Canary Islands, Carretera de Taliarte s/n, Telde, Gran Canaria 35214, Spain;Department of Statistics, Operations Research and Computation, University of La Laguna, Avenida Astrofísico Francisco Sánchez 2, La Laguna, Tenerife 38206, Spain;Department of Physiology, Institute of Biomedical Technologies, CIBICAN, University of La Laguna, Campus de Ofra, s/n, La Laguna, Tenerife 38071, Spain;Institute of Materials and Nanotechnology, University of La Laguna, Avenida Astrofísico Francisco Sánchez s/n, La Laguna, Tenerife 38206, Spain | |
关键词: Adhesion forces; Young modulus; Atomic Force Microscopy; CLSM analysis; Shewanella algae; Antifouling; Biofouling; Biofilm; | |
Others : 1141345 DOI : 10.1186/1471-2180-14-102 |
|
received in 2013-12-22, accepted in 2014-04-11, 发布年份 2014 | |
【 摘 要 】
Background
A variety of conditions (culture media, inocula, incubation temperatures) are employed in antifouling tests with marine bacteria. Shewanella algae was selected as model organism to evaluate the effect of these parameters on: bacterial growth, biofilm formation, the activity of model antifoulants, and the development and nanomechanical properties of the biofilms.
The main objectives were:
1) To highlight and quantify the effect of these conditions on relevant parameters for antifouling studies: biofilm morphology, thickness, roughness, surface coverage, elasticity and adhesion forces.
2) To establish and characterise in detail a biofilm model with a relevant marine strain.
Results
Both the medium and the temperature significantly influenced the total cell densities and biofilm biomasses in 24-hour cultures. Likewise, the IC50 of three antifouling standards (TBTO, tralopyril and zinc pyrithione) was significantly affected by the medium and the initial cell density. Four media (Marine Broth, MB; 2% NaCl Mueller-Hinton Broth, MH2; Luria Marine Broth, LMB; and Supplemented Artificial Seawater, SASW) were selected to explore their effect on the morphological and nanomechanical properties of 24-h biofilms. Two biofilm growth patterns were observed: a clear trend to vertical development, with varying thickness and surface coverage in MB, LMB and SASW, and a horizontal, relatively thin film in MH2. The Atomic Force Microscopy analysis showed the lowest Young modulii for MB (0.16 ± 0.10 MPa), followed by SASW (0.19 ± 0.09 MPa), LMB (0.22 ± 0.13 MPa) and MH2 (0.34 ± 0.16 MPa). Adhesion forces followed an inverted trend, being higher in MB (1.33 ± 0.38 nN) and lower in MH2 (0.73 ± 0.29 nN).
Conclusions
All the parameters significantly affected the ability of S. algae to grow and form biofilms, as well as the activity of antifouling molecules. A detailed study has been carried out in order to establish a biofilm model for further assays. The morphology and nanomechanics of S. algae biofilms were markedly influenced by the nutritional environments in which they were developed. As strategies for biofilm formation inhibition and biofilm detachment are of particular interest in antifouling research, the present findings also highlight the need for a careful selection of the assay conditions.
【 授权许可】
2014 Martín-Rodríguez et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150327025152671.pdf | 2858KB | download | |
Figure 5. | 65KB | Image | download |
Figure 4. | 184KB | Image | download |
Figure 3. | 58KB | Image | download |
Figure 2. | 63KB | Image | download |
Figure 1. | 69KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Ortlepp S, Pedpradap S, Dobretsov S, Proksch P: Antifouling activity of sponge-derived polybrominated diphenyl ethers and synthetic analogues. Biofouling 2008, 24:201-208.
- [2]Lejars M, Margaillan A, Bressy C: Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chem Rev 2012, 112:4347-4390.
- [3]Almeida E, Diamantino TC, de Sousa O: Marine paints: the particular case of antifouling paints. Prog Org Coatings 2007, 59:2-20.
- [4]Chambers LD, Stokes KR, Walsh FC, Wood RJK: Modern approaches to marine antifouling coatings. Surf Coatings Technol 2006, 201:3642-3652.
- [5]Maréchal J-P, Culioli G, Hellio C, Thomas-Guyon H, Callow ME, Clare AS, Ortalo-Magné A: Seasonal variation in antifouling activity of crude extracts of the brown alga Bifurcaria bifurcata (Cystoseiraceae) against cyprids of Balanus amphitrite and the marine bacteria Cobetia marina and Pseudoalteromonas haloplanktis. J Exp Mar Bio Ecol 2004, 313:47-62.
- [6]Tsoukatou M, Maréchal JP, Hellio C, Novaković I, Tufegdzic S, Sladić D, Gasić MJ, Clare AS, Vagias C, Roussis V: Evaluation of the activity of the sponge metabolites avarol and avarone and their synthetic derivatives against fouling micro- and macroorganisms. Molecules 2007, 12:1022-1034.
- [7]Mokrini R, Ben Mesaoud M, Daoudi M, Hellio C, Maréchal J-P, El HM, Ortalo-magne A, Piovetti L, Culioli G: Meroditerpenoids and derivatives from the brown alga Cystoseira baccata and their antifouling properties. J Nat Prod 2008, 71:1806-1811.
- [8]Plouguerné E, Hellio C, Deslandes E, Véron B, Stiger-Pouvreau V: Anti-microfouling activities in extracts of two invasive algae: Grateloupia turuturu and Sargassum muticum. Bot Mar 2008, 51:202-208.
- [9]Bazes A, Silkina A, Defer D, Bernède-Bauduin C, Quéméner E, Braud J-P, Bourgougnon N: Active substances from Ceramium botryocarpum used as antifouling products in aquaculture. Aquaculture 2006, 258:664-674.
- [10]Bazes A, Silkina A, Douzenel P, Faÿ F, Kervarec N, Morin D, Berge J-P, Bourgougnon N: Investigation of the antifouling constituents from the brown alga Sargassum muticum (Yendo) Fensholt. J Appl Phycol 2008, 21:395-403.
- [11]Qi S-H, Zhang S, Qian P-Y, Wang B-G: Antifeedant, antibacterial, and antilarval compounds from the South China Sea seagrass Enhalus acoroides. Bot Mar 2008, 51:441-447.
- [12]Holt HM, Gahrn-Hansen B, Bruun B: Shewanella algae and Shewanella putrefaciens: clinical and microbiological characteristics. Clin Microbiol Infect 2005, 11:347-352.
- [13]Rodrigues JLM, Serres MH, Tiedje JM: Large-scale comparative phenotypic and genomic analyses reveal ecological preferences of Shewanella species and identify metabolic pathways conserved at the genus level. Appl Environ Microbiol 2011, 77:5352-5360.
- [14]Hau HH, Gralnick J: Ecology and biotechnology of the genus Shewanella. Annu Rev Microbiol 2007, 61:237-258.
- [15]El-Naggar MY, Wanger G, Leung KM, Yuzvinsky TD, Southam G, Yang J, Lau WM, Nealson KH, Gorby Y: Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc Natl Acad Sci U S A 2010, 107:18127-18131.
- [16]Patel P, Callow ME, Joint I, Callow J: Specificity in the settlement – modifying response of bacterial biofilms towards zoospores of the marine alga Enteromorpha. Environ Microbiol 2003, 5:338-349.
- [17]Tait K, Williamson H, Atkinson S, Williams P, Cámara M, Joint I: Turnover of quorum sensing signal molecules modulates cross-kingdom signalling. Environ Microbiol 2009, 11:1792-1802.
- [18]Twigg MS, Tait K, Williams P, Atkinson S, Cámara M: Interference with the germination and growth of Ulva zoospores by quorum-sensing molecules from Ulva-associated epiphytic bacteria. Environ Microbiol 2014, 16:445-453.
- [19]Wahl M, Goecke F, Labes A, Dobretsov S, Weinberger F: The second skin: ecological role of epibiotic biofilms on marine organisms. Front Microbiol 2012, 3:292.
- [20]Yang J-L, Shen P-J, Liang X, Li Y-F, Bao W-Y, Li J-L: Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms. Biofouling 2013, 29:247-259.
- [21]Huggett M, Crocetti G, Kjelleberg S, Steinberg P: Recruitment of the sea urchin Heliocidaris erythrogramma and the distribution and abundance of inducing bacteria in the field. Aquat Microb Ecol 2008, 53:161-171.
- [22]Sukovich DJ, Seffernick JL, Richman JE, Hunt K, Gralnick J, Wackett LP: Structure, function, and insights into the biosynthesis of a head-to-head hydrocarbon in Shewanella oneidensis strain MR-1. Appl Environ Microbiol 2010, 76:3842-3849.
- [23]Jiang H-F, Liu X-L, Chang Y-Q, Liu M-T, Wang G-X: Effects of dietary supplementation of probiotic Shewanella colwelliana WA64, Shewanella olleyana WA65 on the innate immunity and disease resistance of abalone, Haliotis discus hannai Ino. Fish Shellfish Immunol 2013, 35:86-91.
- [24]Lobo C, Moreno-Ventas X, Tapia-Paniagua S, Rodríguez C, Moriñigo M, de La Banda IG: Dietary probiotic supplementation (Shewanella putrefaciens Pdp11) modulates gut microbiota and promotes growth and condition in Senegalese sole larviculture. Fish Physiol Biochem 2014, 40:295-309.
- [25]Gram L, Bundvad A, Melchiorsen J, Johansen C: Occurrence of Shewanella algae in Danish coastal water and effects of water temperature and culture conditions on its survival. Appl Environ Microbiol 1999, 65:3896-3900.
- [26]Richards GP, Watson M, Crane EJ, Burt IG, Bushek D: Shewanella and Photobacterium spp. in oysters and seawater from the Delaware Bay. Appl Environ Microbiol 2008, 74:3323-3327.
- [27]Pagani L, Lang A, Vedovelli C, Rimenti G, Pristerà R, Mian P, Moling O, Pristera R: Soft tissue infection and bacteremia caused by Shewanella putrefaciens. J Clin Microbiol 2003, 41:2240-2242.
- [28]Vignier N, Barreau M, Olive C, Baubion E, Théodose R, Hochedez P, Cabié A: Human infection with Shewanella putrefaciens and S. algae: Report of 16 cases in Martinique and review of the literature. Am J Trop Med Hyg 2013, 89:151-156.
- [29]Brink AJ, van Straten A, van Rensburg AJ: Shewanella (Pseudomonas) putrefaciens bacteremia. Clin Infect Dis 1995, 20:1327-1332.
- [30]Poovorawan K, Chatsuwan T, Lakananurak N, Chansaenroj J, Komolmit P, Poovorawan Y: Shewanella haliotis associated with severe soft tissue infection, Thailand, 2012. Emerg Infect Dis 2013, 19:1019-1021.
- [31]Zong Z: Nosocomial peripancreatic infection associated with Shewanella xiamenensis. J Med Microbiol 2011, 60:1387-1390.
- [32]Harrison JJ, Stremick C, Turner RJ, Allan ND, Olson ME, Ceri H: Microtiter susceptibility testing of microbes growing on peg lids: a miniaturized biofilm model for high-throughput screening. Nat Protoc 2010, 5:1236-1254.
- [33]Heu C, Berquand A, Elie-Caille C, Nicod L: Glyphosate-induced stiffening of HaCaT keratinocytes, a Peak Force Tapping study on living cells. J Struct Biol 2012, 178:1-7.
- [34]Berquand A, Holloschi A, Trendelenburg M, Kioschis P: Analysis of cytoskeleton-destabilizing agents by optimized optical navigation and AFM force measurements. Micros Today 2010, 18:34-37.
- [35]Lang S, Hüners M, Verena L: Bioprocess engineering data on the cultivation of marine prokaryotes and fungi. Adv Biochem Eng Biotechnol 2005, 97:29-62.
- [36]Väätänen P: Effects of composition of substrate and inoculation technique on plate counts of bacteria in the Northern Baltic Sea. J Appl Microbiol 1977, 42:437-443.
- [37]Yee LH, Holmström C, Fuary ET, Lewin NC, Kjelleberg S, Steinberg PD: Inhibition of fouling by marine bacteria immobilised in kappa-carrageenan beads. Biofouling 2007, 23:287-294.
- [38]Castro D, Pujalte MJ, Lopez-Cortes L, Garay E, Borrego JJ: Vibrios isolated from the cultured manila clam (Ruditapes philippinarum): numerical taxonomy and antibacterial activities. J Appl Microbiol 2002, 93:438-447.
- [39]Jorgensen JH, Hindler JF: New consensus guidelines from the Clinical and Laboratory Standards Institute for antimicrobial susceptibility testing of infrequently isolated or fastidious bacteria. Clin Infect Dis 2007, 44:280-286.
- [40]Galkiewicz JP, Pratte Z, Gray M, Kellogg C: Characterization of culturable bacteria isolated from the cold-water coral Lophelia pertusa. FEMS Microbiol Ecol 2011, 77:333-346.
- [41]Moskot M, Kotlarska E, Jakóbkiewicz-banecka J, Fari K, Węgrzyn G, Wróbel B: Metal and antibiotic resistance of bacteria isolated from the Baltic Sea. Int Microbiol 2012, 15:131-139.
- [42]Poleunis C, Rubio C, Compère C, Bertrand P: Role of salts on the BSA adsorption on stainless steel in aqueous solutions. II. ToF-SIMS spectral and chemical mapping study. Surf Interface Anal 2002, 34:55-58.
- [43]Kapfhammer D, Karatan E, Pflughoeft KJ, Watnick PI: Role for glycine betaine transport in Vibrio cholerae osmoadaptation and biofilm formation within microbial communities. Appl Environ Microbiol 2005, 71:3840-3847.
- [44]Kierek K, Watnick PI: The Vibrio cholerae O139 O-antigen polysaccharide is essential for Ca2+-dependent biofilm development in sea water. Proc Natl Acad Sci U S A 2003, 100:14357-14362.
- [45]Patrauchan M, Sarkisova S, Sauer K, Franklin MJ: Calcium influences cellular and extracellular product formation during biofilm-associated growth of a marine Pseudoalteromonas sp. Microbiology 2005, 151:2885-2897.
- [46]Song B, Leff LG: Influence of magnesium ions on biofilm formation by Pseudomonas fluorescens. Microbiol Res 2006, 161:355-361.
- [47]Liang Y, Gao H, Chen J, Dong Y, Wu L, He Z, Liu X, Qiu G, Zhou J: Pellicle formation in Shewanella oneidensis. BMC Microbiol 2010, 10:291. BioMed Central Full Text
- [48]Stauder M, Vezzulli L, Pezzati E, Repetto B, Pruzzo C: Temperature affects Vibrio cholerae O1 El Tor persistence in the aquatic environment via an enhanced expression of GbpA and MSHA adhesins. Environ Microbiol Rep 2010, 2:140-144.
- [49]Chiu JMY, Thiyagarajan V, Tsoi MMY, Qian PY: Qualitative and quantitative changes in marine biofilms as a function of temperature and salinity in summer and winter. Biofilms 2006, 2:183-195.
- [50]McDougald D, Lin WH, Rice S, Kjelleberg S: The role of quorum sensing and the effect of environmental conditions on biofilm formation by strains of Vibrio vulnificus. Biofouling 2006, 22:161-172.
- [51]Joseph LA, Wright AC: Expression of Vibrio vulnificus capsular polysaccharide inhibits biofilm formation. J Bacteriol 2004, 186:889-893.
- [52]Egervärn M, Lindmark H, Roos S, Huys G, Lindgren S: Effects of inoculum size and incubation time on broth microdilution susceptibility testing of lactic acid bacteria. Antimicrob Agents Chemother 2007, 51:394-396.
- [53]Bidlas E, Du T, Lambert RJW: An explanation for the effect of inoculum size on MIC and the growth/no growth interface. Int J Food Microbiol 2008, 126:140-152.
- [54]Heindl H, Thiel V, Wiese J, Imhoff JF: Bacterial isolates from the bryozoan Membranipora membranacea : influence of culture media on isolation and antimicrobial activity. Int Microbiol 2012, 15:17-32.
- [55]Briand J-F: Marine antifouling laboratory bioassays: an overview of their diversity. Biofouling 2009, 25:297-311.
- [56]Klare I, Konstabel C, Müller-bertling S, Huys G, Vancanneyt M, Swings J, Goossens H, Witte W, Mu S, Reissbrodt R: Evaluation of new broth media for microdilution antibiotic susceptibility testing of Lactobacilli, Pediococci, Lactococci, and Bifidobacteria. Appl Environ Microbiol 2005, 71:8982-8986.
- [57]Huys G, D’Haene K, Swings J: Influence of the culture medium on antibiotic susceptibility testing of food-associated lactic acid bacteria with the agar overlay disc diffusion method. Lett Appl Microbiol 2002, 34:402-406.
- [58]Murga R, Stewart PS, Daly D: Quantitative analysis of biofilm thickness variability. Biotechnol Bioeng 1995, 45:503-510.
- [59]Arnal L, Serra DO, Cattelan N, Castez MF, Vázquez L, Salvarezza RC, Yantorno OM, Vela ME: Adhesin contribution to nanomechanical properties of the virulent Bordetella pertussis envelope. Langmuir 2012, 28:7461-7469.
- [60]Polyakov P, Soussen C, Duan J, Duval JFL, Brie D, Francius G: Automated force volume image processing for biological samples. PLoS One 2011, 6:e18887.
- [61]Oh YJ, Jo W, Yang Y, Park S: Influence of culture conditions on Escherichia coli O157:H7 biofilm formation by atomic force microscopy. Ultramicroscopy 2007, 107:869-874.
- [62]Gaboriaud F, Bailet S, Dague E, Jorand F: Surface structure and nanomechanical properties of Shewanella putrefaciens bacteria at two pH values (4 and 10) determined by atomic force microscopy. J Bacteriol 2005, 187:3864-3868.
- [63]Alsteens D, Dague E, Rouxhet PG, Baulard AR, Dufrêne YF: Direct measurement of hydrophobic forces on cell surfaces using AFM. Langmuir 2007, 23:11977-11979.
- [64]Mårdén P, Tunlid A, Malmcrona-Friberg K, Odham G, Kjelleberg S: Physiological and morphological changes during short term starvation of marine bacterial islates. Arch Microbiol 1985, 142:326-332.
- [65]Östling J: Behaviour of IncP-1 plasmids and a miniMu transposon in a marine Vibrio sp.: isolation of starvation inducible lac operon fusions. FEMS Microbiol Ecol 1991, 86:83-93.
- [66]O’Toole GA, Kolter R: Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 1998, 28:449-461.
- [67]Kwasny SM, Opperman TJ: Static biofilm cultures of Gram-positive pathogens grown in a microtiter format used for anti-biofilm drug discovery. Curr Protoc Pharmacol 2010, Chapter 13:Unit 13A.8.
- [68]CLSI: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard — Ninth Edition. Volume 32. Wayne, PA, USA: Clinical and Laboratory Standards Institute; 2012.
- [69]Bernas T, Asem EK, Robinson JP, Cook PR, Dobrucki JW: Confocal fluorescence imaging of photosensitized DNA denaturation in cell nuclei. Photochem Photobiol 2005, 81:960-969.
- [70]Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersbøll BK, Molin S: Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 2000, 146:2395-2407.
- [71]Klein MI, Xiao J, Heydorn A, Koo H: An analytical tool-box for comprehensive biochemical, structural and transcriptome evaluation of oral biofilms mediated by mutans streptococci. J Vis Exp 2011, 47:2512.
- [72]Schneider CA, Rasband WS, Eliceiri KW: NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012, 9:671-675.
- [73]Dufrêne YF, Martínez-Martín D, Medalsy I, Alsteens D, Müller DJ: Multiparametric imaging of biological systems by force-distance curve-based AFM. Nat Methods 2013, 10:847-854.
- [74]Dokukin ME, Sokolov I: Quantitative mapping of the elastic modulus of soft materials with HarmoniX and PeakForce QNM AFM modes. Langmuir 2012, 28:16060-16071.
- [75]Berquand A, Roduit C, Kasas S, Holloschi A, Ponce L, Hafner M: Atomic force microscopy imaging of living cells. Micros Today 2010, 18:8-14.
- [76]Pletikapić G, Berquand A, Radić TM, Svetličić V: Quantitative nanomechanical mapping of marine diatom in seawater using Peak Force Tapping Atomic Force Microscopy. J Phycol 2012, 48:174-185.
- [77]Alsteens D, Dupres V, Yunus S, Latgé J-P, Heinisch JJ, Dufrêne YF: High-resolution imaging of chemical and biological sites on living cells using peak force tapping atomic force microscopy. Langmuir 2012, 28:16738-16744.
- [78]Horcas I, Fernández R, Gómez-Rodríguez JM, Colchero J, Gómez-Herrero J, Baro AM: WSxM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 2007, 78:013705.