期刊论文详细信息
BMC Complementary and Alternative Medicine
Essential oil from Xylopia frutescens Aubl. reduces cytosolic calcium levels on guinea pig ileum: mechanism underlying its spasmolytic potential
Bagnólia Araújo da Silva3  Fabiana de Andrade Cavalcante6  Edgar Julian Paredes-Gamero4  Josean Fechine Tavares3  Vicente Carlos de Oliveira Costa3  Maria da Conceição Correia Silva1  Luiz Henrique César Vasconcelos1  Layanne Cabral da Cunha Araujo5  Ana Carolina de Carvalho Correia2  Iara Leão Luna de Souza1 
[1]Centro de Ciências da Saúde/Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
[2]Instituto de Ciências Biológicas e da Saúde/Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
[3]Instituto de Pesquisa em Fármacos e Medicamentos/Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
[4]Instituto Nacional de Farmacologia/Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
[5]Centro de Ciências Exatas e da Natureza/Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
[6]Universidade Federal da Paraíba, Centro de Ciências da Saúde/Pós-Graduação em Produtos Naturais e Sintéticos Bioativos/Laboratório de Farmacologia Funcional Prof. George Thomas, Cidade, Universitária, João Pessoa, 58051-970, Paraíba, Brazil
关键词: Calcium;    Guinea pig ileum;    Spasmolytic action;    Essential oil;    Xylopia frutescens;   
Others  :  1226052
DOI  :  10.1186/s12906-015-0849-3
 received in 2015-03-26, accepted in 2015-09-03,  发布年份 2015
PDF
【 摘 要 】

Background

Xylopia frutescens Aubl. (embira, semente-de-embira or embira-vermelha), is used in folk medicine as antidiarrheal. The essential oil from its leaves (XF-EO) has been found to cause smooth muscle relaxation. Thus, the aim of this study was to investigate the spasmolytic action by which XF-EO acts on guinea pig ileum.

Methods

The components of the XF-EO were identified by gas chromatography-mass spectrometry. Segments of guinea pig ileum were suspended in organ bath containing modified Krebs solution at 37 °C, bubbled with carbogen mixture under a resting tension of 1 g. Isotonic contractions were registered using kymographs and isometric contractions using force transducer coupled to an amplifier and computer. Fluorescence measurements were obtained with a microplate reader using Fluo-4.

Results

Forty-three constituents were identified in XF-EO, mostly mono- and sesquiterpenes. XF-EO has been found to cause relaxation on guinea pig ileum. The essential oil inhibited in a concentration-dependent manner both CCh- and histamine-induced phasic contractions, being more potent on histamine-induced contractions as well as antagonized histamine-induced cumulative contractions in a non-competitive antagonism profile. XF-EO relaxed in a concentration-dependent manner the ileum pre-contracted with KCl and histamine. Since the potency was smaller in organ pre-contracted with KCl, it was hypothesized that XF-OE would be acting as a K +channel positive modulator. In the presence of CsCl (non-selective K +channel blocker), the relaxant potency of XF-OE was not altered, indicating a non-participation of these channels. Moreover, XF-EO inhibited CaCl 2 -induced cumulative contractions in a depolarizing medium nominally without Ca 2+and relaxed the ileum pre-contracted with S-(-)-Bay K8644 in a concentration-dependent manner, thus, was confirmed the inhibition of Ca 2+influx through Ca v 1 by XF-EO. In cellular experiments, the viability of longitudinal layer myocytes from guinea pig ileum was not altered in the presence of XF-OE and the Fluo-4-associated fluorescence intensity in these intestinal myocytes stimulated by histamine was reduced by the essential oil, indicating a [Ca 2+ ] creduction.

Conclusion

Spasmolytic action mechanism of XF-EO on guinea pig ileum can involve histaminergic receptor antagonism and Ca 2+influx blockade, which results in [Ca 2+ ] creduction leading to smooth muscle relaxation.

【 授权许可】

   
2015 Souza et al.

【 预 览 】
附件列表
Files Size Format View
20150923014259764.pdf 1262KB PDF download
Fig. 7. 12KB Image download
Fig. 6. 36KB Image download
Fig. 5. 25KB Image download
Fig. 4. 28KB Image download
Fig. 3. 24KB Image download
Fig. 2. 25KB Image download
Fig. 1. 37KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

【 参考文献 】
  • [1]Shafi A, Farooq U, Akram K, Jaskani M, Siddique F, Tanveer A. Antidiarrheal effect of food fermented by various strains of Lactobacillus. Compr Rev Food Sci F. 2014; 13:229-39.
  • [2]World Health Organization. World Health Organization Diarrhea Guidelines. 2014 http://www.who.int/topics/diarrhoea/en. Accessed 02 April 2014.
  • [3]Ventura-Martínez R, Rivero-Osorno O, Gómez C, González-Trujano ME. Spasmolytic activity of Rosmarinus officinalis L. involves calcium channels in the guinea pig ileum. J Ethnopharmacol. 2011; 137:1528-32.
  • [4]Costa LCB, Rocha EA, Silva LAM, Jardim JG, Silva DC, Gaião LO et al.. Levantamento preliminar das espécies vegetais com potencial econômico no Parque Municipal da Boa Esperança, Ilhéus, Bahia, Brasil. Acta Farm Bonaer. 2006; 25:184-91.
  • [5]Duke JA, Vasquez-Martinez R. Amazonian ethnobotanical dictionary. 2nd ed. Boca Raton, Florida: CRC Press; 1994.
  • [6]Takahashi JA, Boaventura MAD, Bayma JC, Oliveira AB. Frutoic acid, a dimeric kaurane diterpene from Xylopia frutescens. Phytochem. 1995; 40:607-9.
  • [7]Braga FC, Wagner H, Lombardi JA, Oliveira AB. Screening Brazilian plant species for in vitro inhibition of 5-lipoxygenase. Phytomedicine. 2000; 6:447-52.
  • [8]Block LC, Santos ARS, Souza MM, Scheidt C, Yunes RA, Santos MA et al.. Chemical and pharmacological examination of antinociceptive constituents of Wedelia paludosa. J Ethnopharmacol. 1998; 61:85-9.
  • [9]Somova LI, Shode FO, Moodley K, Govender Y. Cardiovascular and diuretic activity of kaurene derivatives of Xylopia aethiopica and Alepidea amatymbica. J Ethnopharmacol. 2001; 77:165-74.
  • [10]Matsuse IT, Lim YA, Hattori M, Correa M, Gupta MP. A search for anti-viral properties in Panamanian medicinal plants. The effects on HIV and its essential enzymes. J Ethnopharmacol. 1999; 64:15-22.
  • [11]Lima EO, Gompertz OF, Paulo MQ, Giesbrecht AM. Atividade antifúngica in vitro de óleo essenciais frente a isolados clínicos de dermatófitos. Rev Microbiol. 1992; 23:235-68.
  • [12]Silva TB, Menezes LRA, Sampaio MFC, Meira CS, Guimarães ET, Soares MBP et al.. Chemical composition and anti-trypanossoma cruzi activity of essential oils obtained from leaves of Xylopia frutescens and X. laevigata (Annonaceae). Nat Prod Commun. 2013; 8:403-6.
  • [13]Ferraz RP, Cardoso GM, Silva TB, Fontes JE, Prata AP, Carvalho AA et al.. Antitumor properties of the leaf essential oil of Xylopia frutescens Aubl. (Annonaceae). Food Chem. 2013; 141:196-200.
  • [14]Correia ACC. Estudo Comparativo da atividade espasmolítica de óleos essenciais de espécies de Annonaceae. Rollinia leptopetala R. E. Fries, Xylopia langsdorfiana A. St.-Hil. & Tul. e Xylopia frutescens Aubl. Universidade Federal da Paraíba, João Pessoa; 2013.
  • [15]Adams RP. Identification of essential oil components by gas chromatography/mass spectrometry. Allured Publishing Corporation, Carol Stream, USA; 2007.
  • [16]Mass Spectral Library. The NIST Mass Spectrometry Data Center, Gaithersburg, USA; 2005.
  • [17]Sherwin CM, Christiansen SB, Duncan IJH, Erhard HW, Lay DC, Mench JA et al.. Guidelines for the ethical use of animals in applied animal behaviour research. Appl Anim Behav Sci. 2003; 81:291-305.
  • [18]Sun YD, Benishin CG. K + channel openers relax longitudinal muscle of guinea-pig ileum. Eur J Pharmacol. 1994; 271:453-9.
  • [19]Claro S, Kanashiro CA, Oshiro MEM, Ferreira AT, Khalil RA. α-and ε-protein kinase C activity during smooth muscle apoptosis in response to γ-radiation. J Pharmacol Exp Ther. 2007; 322:964-72.
  • [20]Daniel EE, Kwan CY, Janssen L. Pharmacological techniques for the in vitro study of intestinal smooth muscle. J Pharmacol Toxicol. 2001; 45:141-59.
  • [21]Dunne A. Comparison of individual and cumulative dose-response curves [proceedings]. Br J Pharmacol. 1979; 67:491-2.
  • [22]Cecchi X, Wolff D, Alvarez O, Latorre R. Mechanisms of Cs + blockade in a Ca 2+ -activated K + channel from smooth muscle. Biophys J. 1987; 52:707-16.
  • [23]Knot HT, Brayden EJ, Nelson MT. Calcium channels and potassium channels. In: Biochemistry of smooth muscle contraction. Bárány M, editor. Academic, San Diego; 1996: p.203-19.
  • [24]Van Rossum JM. Cumulative dose-response curves. Arch Int Pharmacodyn Ther. 1963; 143:299-330.
  • [25]Usowicz MM, Gigg M, Jones LM, Cheung CW, Hartley SA. Allosteric interactions at L-type calcium channels between FPL 64176 and the enantiomers of the dihydropyridine Bay K 8644. J Pharmacol Exp Ther. 1995; 275:638-45.
  • [26]Ferrante J, Luchowski E, Rutledge A, Triggle DJ. Binding of a 1,4-dihydropyridine calcium channel activator, S-(−)-Bay K8644, to cardiac preparations. Biochem Biophys Res Commun. 1989; 158:149-54.
  • [27]Denizot F, Lang R. Rapid colorimetric assay for cell growth and survival, modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods. 1986; 89:271-7.
  • [28]Paredes RM, Etzler JC, Watts LT, Zheng W, Lechleiter JD. Chemical calcium indicators. Methods. 2008; 46:143-51.
  • [29]Neubig RR, Spedding M, Kenakin T, Christopoulos A. International union of pharmacology committee on receptor nomenclature and drug classification. XXXVIII. Update on terms and symbols in quantitative pharmacology. Pharmacol Rev. 2003; 55:597-606.
  • [30]Pasricha PJ. Treatment of disorders of bowel motility and water flux; antiemetics; agents used in biliary and pancreatic disease. In: Goodman and Gilman’s the pharmacological basis of therapeutics. Brunton LL, Lazo JS, Parker KL, editors. McGraw-Hill, USA; 2006: p.983-1019.
  • [31]Mims BC, Curry CE. Constipation, diarrhea, and irritable bowel syndrome. In: Pharmacotherapy principles and practice. Brown M, Malley J, Pancotti R, Brown RY, editors. McGraw-Hill, USA; 2008: p.307-21.
  • [32]Maia GS, Andrade EHA, Silva ACM, Oliveira J, Carreira LMN, Araújo JS. Leaf volatile oils from Brazilian Xylopia species. Flavor Frag J. 2005; 20:474-7.
  • [33]Madeira SVF, Matos FJA, Leal-Cardoso JH, Criddle DN. Relaxant effects of the essential oil of Ocimum gratissimum on isolated ileum of the guinea pig. J Ethnopharmacol. 2002; 81:1-4.
  • [34]May LT, Leach K, Sexton PM, Christopoulos A. Allosteric modulation of G protein-coupled receptors. Annu Rev Pharmacol Toxicol. 2007; 47:1-51.
  • [35]Abdel-Latif AA. Calcium mobilizing receptors, polyphospholinositides, generation of second messengers and contraction in mammalian smooth muscle: historical perspectives and current status. Life Sci. 1989; 45:757-86.
  • [36]Kobayashi S, Kitazawa T, Somlyo AV, Somlyo AP. Citosolic heparin inhibits muscarinic and α-adrenergic Ca 2+ -release in smooth muscle: physiological role of inositol 1,4,5-trisphosphate in pharmacomechanical coupling. J Biol Chem. 1989; 264:17997-8004.
  • [37]Horie S, Tsurumaki Y, Someya A, Hirabayashi T, Saito T, Okuma Y et al.. Involvement of cyclooxygenase-dependent pathway in contraction of isolated ileum by urotensin II. Peptides. 2005; 26:323-9.
  • [38]Tanahashi Y, Unno T, Matsuyama H, Ishii T, Yamada M, Wess J et al.. Multiple muscarinic pathways mediate the suppression of voltage-gated Ca 2+ channels in mouse intestinal smooth muscle cells. Br J Pharmacol. 2009; 158:1874-83.
  • [39]Nouailhetas VLA, Shimuta SI, Paiva ACM, Paiva TB. Calcium and sodium dependence of the biphasic response of the guinea-pig ileum agonists. Eur J Pharmacol. 1985; 116:41-7.
  • [40]Yuan YM, Xu DY, Hu GY. Pinacidil suppression on 5-HT3 receptor-mediated contraction of guinea pig ileum in vitro. Acta Pharmacol Sin. 1998;19:31–5.
  • [41]Karaki H, Mitsui-Saito M, Amano K, Harada K, Miyamoto S, Nakazawa H et al.. Calcium movements, distribution, and functions in smooth muscle. Pharmacol Rev. 1997; 49:157-230.
  • [42]Rembold CM. Regulation of contraction and relaxation in arterial smooth muscle. Hypertension. 1992; 20:129-37.
  • [43]Kuriyama H, Kitamura K, Nabata H. Pharmacological and physiological significance of ion channels and factors that modulate them in vascular tissues. Pharmacol Rev. 1995; 47:387-573.
  • [44]Catterall WA. Voltage-gated calcium channels. Cold Spring Harb Perspect Biol. 2011; 11:1-24.
  • [45]Alexander SPH, Mathie A, Peters JA. Guide to Receptors and Channels (GRAC). Br J Pharmacol. 2008; 2:153.
  • [46]Spedding M, Paoletti R. Classification of calcium channels and the sites of action of drugs modifying channel function. Pharmacol Rev. 1992; 44:363-76.
  • [47]Murthy KS. Signaling for contraction and relaxation in smooth muscle of the gut. Annu Rev Physiol. 2006; 68:345-74.
  • [48]Somlyo AP, Somlyo AV. Signal transduction and regulation in smooth muscle. Nature. 1994; 372:231-6.
  • [49]Webb RC. Smooth muscle contraction and relaxation. Adv Physiol Ed. 2003; 27:201-6.
  • [50]Wray S, Kupittayanant S, Shmigol A, Smith RD, Burdyga TV. The physiological basis of uterine contractility: a short review. Exp Physiol. 2001; 86:239-46.
  文献评价指标  
  下载次数:14次 浏览次数:14次