期刊论文详细信息
BMC Genomics
Genome and transcriptome sequencing identifies breeding targets in the orphan crop tef (Eragrostis tef)
Zerihun Tadele1  Kebebew Assefa6  Cris Kuhlemeier1  Laurent Falquet7  Michel Schneider5  Eric Lyons8  Laurent Farinelli9  Regula Blösch1  Solomon Chanyalew6  Edouard de Castro5  Dejene Girma2  Yi Song Wilson1  Stéphanie Larti4  Korinna Esfeld1  Sonia Plaza-Wüthrich1  Gina Cannarozzi3 
[1] University of Bern, Institute of Plant Sciences, Altenbergrain 21, Bern CH-3013, Switzerland;Ethiopian Institute of Agricultural Research, National Biotechnology Laboratory (Holetta), P.O. Box 2003, Addis Ababa, Ethiopia;Swiss Institute of Bioinformatics, Vital-IT, Quartier Sorge - Batiment Genopode, Lausanne 1015, Switzerland;Current address: University of Bern, Clinic for Parodontology, Freiburgstrasse 7, Bern CH-3010, Switzerland;Swiss Institute of Bioinformatics, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland;Ethiopian Institute of Agricultural Research, Debre Zeit Agricultural Research Center, P.O. Box 32, Debre Zeit, Ethiopia;Current address: University of Fribourg, Faculty of Science, Ch. du Musée 10, Fribourg CH-1700, Switzerland;Univerisity of Arizona, School of Plant Sciences, 1140 E. South Campus Drive, 303 Forbes Building, P.O. Box 210036, Tucson, AZ 85721-0036, USA;Fasteris SA, Ch. du Pont-du-Centenaire 109, P.O. Box 28, Plan-les-Ouates CH-1228, Switzerland
关键词: Prolamin;    Abiotic stress;    Transcriptome;    Genome;    Eragrostis tef;    Tef;   
Others  :  1216495
DOI  :  10.1186/1471-2164-15-581
 received in 2014-03-27, accepted in 2014-07-03,  发布年份 2014
PDF
【 摘 要 】

Background

Tef (Eragrostis tef), an indigenous cereal critical to food security in the Horn of Africa, is rich in minerals and protein, resistant to many biotic and abiotic stresses and safe for diabetics as well as sufferers of immune reactions to wheat gluten. We present the genome of tef, the first species in the grass subfamily Chloridoideae and the first allotetraploid assembled de novo. We sequenced the tef genome for marker-assisted breeding, to shed light on the molecular mechanisms conferring tef’s desirable nutritional and agronomic properties, and to make its genome publicly available as a community resource.

Results

The draft genome contains 672 Mbp representing 87% of the genome size estimated from flow cytometry. We also sequenced two transcriptomes, one from a normalized RNA library and another from unnormalized RNASeq data. The normalized RNA library revealed around 38000 transcripts that were then annotated by the SwissProt group. The CoGe comparative genomics platform was used to compare the tef genome to other genomes, notably sorghum. Scaffolds comprising approximately half of the genome size were ordered by syntenic alignment to sorghum producing tef pseudo-chromosomes, which were sorted into A and B genomes as well as compared to the genetic map of tef. The draft genome was used to identify novel SSR markers, investigate target genes for abiotic stress resistance studies, and understand the evolution of the prolamin family of proteins that are responsible for the immune response to gluten.

Conclusions

It is highly plausible that breeding targets previously identified in other cereal crops will also be valuable breeding targets in tef. The draft genome and transcriptome will be of great use for identifying these targets for genetic improvement of this orphan crop that is vital for feeding 50 million people in the Horn of Africa.

【 授权许可】

   
2014 Cannarozzi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150630213708182.pdf 3251KB PDF download
Figure 6. 133KB Image download
Figure 5. 64KB Image download
Figure 4. 141KB Image download
Figure 3. 92KB Image download
Figure 2. 43KB Image download
Figure 1. 82KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]CSA: Agricultural Sample Survey for 2012/13. Ethiopia: Statistical Bulletin Addis Ababa; 2013.
  • [2]Umeta M, West CE, Fufa H: Content of zinc, iron, calcium and their absorption inhibitors in foods commonly consumed in Ethiopia. J Food Compos Anal 2005, 18(8):803-817.
  • [3]Eragrain [http://www.eragrain.com/pdf/Consumer%20brochure%205-2012%20no%20address%20label.pdf webcite]
  • [4]Alaunyte I, Stojceska V, Plunkett A, Ainsworth P, Derbyshire E: Improving the quality of nutrient-rich Teff (Eragrostis tef) breads by combination of enzymes in straight dough and sourdough breadmaking. J Cereal Sci 2012, 55(1):22-30.
  • [5]Tye-Din JA, Stewart JA, Dromey JA, Beissbarth T, van Heel DA, Tatham A, Henderson K, Mannering SI, Gianfrani C, Jewell DP, Hill AV, McCluskey J, Rossjohn J, Anderson RP: Comprehensive, quantitative mapping of T cell epitopes in gluten in celiac disease. Sci Transl Med 2010, 2(41):41ra51.
  • [6]Hopman E, Dekking L, Blokland ML, Wuisman M, Zuijderduin W, Koning F, Schweizer J: Tef in the diet of celiac patients in The Netherlands. Scand J Gastroenterol 2008, 43(3):277-282.
  • [7]Spaenij-Dekking L, Kooy-Winkelaar Y, Koning F: The Ethiopian cereal tef in celiac disease. New Engl J Med 2005, 353(16):1748-1749.
  • [8]Zeid M, Belay G, Mulkey S, Poland J, Sorrells ME: QTL mapping for yield and lodging resistance in an enhanced SSR-based map for tef. Theor Appl Genet 2011, 122(1):77-93.
  • [9]Yu JK, Sun Q, Rota ML, Edwards H, Tefera H, Sorrells ME: Expressed sequence tag analysis in tef (Eragrostis tef (Zucc) Trotter). Genome 2006, 49(4):365-372.
  • [10]Smith SM, Yuan YN, Doust AN, Bennetzen JL: Haplotype analysis and linkage disequilibrium at five loci in eragrostis tef. G3-Genes Genom Genet 2012, 2(3):407-419.
  • [11]Ingram AL, Doyle JJ: The origin and evolution of Eragrostis tef (Poaceae) and related polyploids: Evidence from nuclear waxy and plastid rps16. Am J Bot 2003, 90(1):116-122.
  • [12]Bekele E, Lester RN: Biochemical assessment of the relationships of eragrostis-Tef (Zucc) Trotter with Some Wild Eragrostis Species (Gramineae). Ann Bot-London 1981, 48(5):717-725.
  • [13]Hundera F, Arumuganathan K, Baenziger P: Determination of relative nuclear DNA content of tef [Eragrostis tef (Zucc.) Trotter] using flow cytometry. J Genet Breed 2000, 54:165-168.
  • [14]Soltis PS, Soltis DE: The role of hybridization in plant speciation. Annu Rev Plant Biol 2009, 60:561-588.
  • [15]Van de Peer Y, Maere S, Meyer A: OPINION The evolutionary significance of ancient genome duplications. Nat Rev Genet 2009, 10(10):725-732.
  • [16]Brochmann C, Brysting AK, Alsos IG, Borgen L, Grundt HH, Scheen AC, Elven R: Polyploidy in arctic plants. Biol J Linn Soc 2004, 82(4):521-536.
  • [17]Leitch AR, Leitch IJ: Perspective - genomic plasticity and the diversity of polyploid plants. Science 2008, 320(5875):481-483.
  • [18]Schatz MC, Witkowski J, McCombie WR: Current challenges in de novo plant genome sequencing and assembly. Genome Biol 2012, 13(4):243.
  • [19]Phillippy AM, Schatz MC, Pop M: Genome assembly forensics: finding the elusive mis-assembly. Genome Biol 2008, 9(3):R55.
  • [20]Kelley DR, Salzberg SL: Detection and correction of false segmental duplications caused by genome mis-assembly. Genome Biol 2010, 11(3):R28.
  • [21]Yukawa M, Tsudzuki T, Sugiura M: The chloroplast genome of Nicotiana sylvestris and Nicotiana tomentosiformis: complete sequencing confirms that the Nicotiana sylvestris progenitor is the maternal genome donor of Nicotiana tabacum. Mol Genet Genomics 2006, 275(4):367-373.
  • [22]Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S, Zou C, Li Q, Yuan Y, Lu C, Wei H, Gou C, Zheng Z, Yin Y, Zhang X, Liu K, Wang B, Song C, Shi N, Kohel RJ, Percy RG, Yu JZ, Zhu YX, Wang J, Yu S: The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 2012, 44(10):1098-1103.
  • [23]Wurm Y, Wang J, Riba-Grognuz O, Corona M, Nygaard S, Hunt BG, Ingram KK, Falquet L, Nipitwattanaphon M, Gotzek D, Dijkstra MB, Oettler J, Comtesse F, Shih CJ, Wu WJ, Yang CC, Thomas J, Beaudoing E, Pradervand S, Flegel V, Cook ED, Fabbretti R, Stockinger H, Long L, Farmerie WG, Oakey J, Boomsma JJ, Pamilo P, Yi SV, Heinze J, et al.: The genome of the fire ant Solenopsis invicta. Proc Natl Acad Sci U S A 2011, 108(14):5679-5684.
  • [24]Consortium PGS: Genome sequence and analysis of the tuber crop potato. Nature 2011, 475(7355):U189-U194.
  • [25]Schreiber AW, Hayden MJ, Forrest KL, Kong SL, Langridge P, Baumann U: Transcriptome-scale homoeolog-specific transcript assemblies of bread wheat. BMC Genomics 2012, 13:492.
  • [26]Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu SM, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam TW, Wang J: SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 2011, 1(1):18-18.
  • [27]Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, et al.: Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005, 437(7057):376-380.
  • [28]Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 2011, 29(7):644-652.
  • [29]Zerbino DR, Birney E: Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008, 18(5):821-829.
  • [30]Nakasugi K, Crowhurst R, Bally J, Waterhouse P: Combining transcriptome assemblies from multiple de novo assemblers in the allo-tetraploid plant nicotiana benthamiana. PLoS ONE 2014, 9(3):e91776. doi:10.1371/journal.pone.0091776
  • [31]Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Triplett J, Yang X, Ye CY, Mauro-Herrera M, Wang L, Li P, Sharma M, Sharma R, Ronald PC, Panaud O, Kellogg EA, Brutnell TP, et al.: Reference genome sequence of the model plant Setaria. Nat Biotechnol 2012, 30(6):555-561.
  • [32]Zhang G, Liu X, Quan Z, Cheng S, Xu X, Xie M, Zeng P, Yue Z, Wang W, Tao Y, Bian C, Han C, Xia Q, Peng X, Cao R, Yang X, Zhan D, Hu J, Zhang Y, Li H, Li H, Li N, Wang J, Wang C, Wang R, Guo T, Cai Y, Liu C, Xiang H, Shi Q, et al.: Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 2012, 30(6):549-554.
  • [33]Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, Ren Y, Zhu H, Li J, Lin K, Jin W, Fei Z, Li G, Staub J, Kilian A, van der Vossen EA, Wu Y, Guo J, He J, Jia Z, Ren Y, Tian G, Lu Y, Ruan J, Qian W, Wang M, et al.: The genome of the cucumber, cucumis sativus L. Nat Genet 2009, 41(12):1275-1281.
  • [34]Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z, Min J, Guo X, Murat F, Ham BK, Zhang Z, Gao S, Huang M, Xu Y, Zhong S, Bombarely A, Mueller LA, Zhao H, He H, Zhang Y, Zhang Z, Huang S, Tan T, Pang E, Lin K, Hu Q, et al.: The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 2012, 45(1):51-58.
  • [35]Argout X, Salse J, Aury JM, Guiltinan MJ, Droc G, Gouzy J, Allegre M, Chaparro C, Legavre T, Maximova SN, Abrouk M, Murat F, Fouet O, Poulain J, Ruiz M, Roguet Y, Rodier-Goud M, Barbosa-Neto JF, Sabot F, Kudrna D, Ammiraju JSS, Schuster SC, Carlson JE, Sallet E, Schiex T, Dievart A, Kramer M, Gelley L, Shi Z, Berard A, et al.: The genome of Theobroma cacao. Nat Genet 2010, 43(2):101-108.
  • [36]Al-Mssallem IS, Hu S, Zhang X, Lin Q, Liu W, Tan J, Yu X, Liu J, Pan L, Zhang T, Yin Y, Xin C, Wu H, Zhang G, Ba Abdullah MM, Huang D, Fang Y, Alnakhli YO, Jia S, Yin A, Alhuzimi EM, Alsaihati BA, Al-Owayyed SA, Zhao D, Zhang S, Al-Otaibi NA, Sun G, Majrashi MA, Li F, Tala : De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nat Biotechnol 2011, 29(6):521-527.
  • [37]Marcais G, Kingsford C: A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 2011, 27(6):764-770.
  • [38]Li XM, Waterman MS: Estimating the repeat structure and length of DNA sequences using l-tuples. Genome Res 2003, 13(8):1916-1922.
  • [39]Li R, Fan W, Tian G, Zhu H, He L, Cai J, Huang Q, Cai Q, Li B, Bai Y, Zhang Z, Zhang Y, Wang W, Li J, Wei F, Li H, Jian M, Li J, Zhang Z, Nielsen R, Li D, Gu W, Yang Z, Xuan Z, Ryder OA, Leung FC, Zhou Y, Cao J, Sun X, Fu Y, et al.: The sequence and de novo assembly of the giant panda genome (vol 463, pg 311, 2010). Nature 2010, 463(7284):1106-1106.
  • [40]Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, et al.: The Sorghum bicolor genome and the diversification of grasses. Nature 2009, 457(7229):551-556.
  • [41]Holt C, Yandell M: MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics 2011, 12(1):491. doi:10.1186/1471-2105-12-491
  • [42]Cantarel BL, Korf I, Robb SM, Parra G, Ross E, Moore B, Holt C, Sanchez Alvarado A, Yandell M: MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res 2008, 18(1):188-196.
  • [43]Lyons E, Freeling M: How to usefully compare homologous plant genes and chromosomes as DNA sequences. Plant J 2008, 53(4):661-673.
  • [44]Lyons E, Pedersen B, Kane J, Freeling M: The value of nonmodel genomes and an example using SynMap Within CoGe to dissect the hexaploidy that predates the rosids. Trop Plant Biol 2008, 1(3–4):181-190.
  • [45]Lyons E, Pedersen B, Kane J, Alam M, Ming R, Tang H, Wang X, Bowers J, Paterson A, Lisch D, Freeling M: Finding and comparing syntenic regions among arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiol 2008, 148(4):1772-1781.
  • [46]Krumsiek J, Arnold R, Rattei T: Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 2007, 23(8):1026-1028.
  • [47]Zeid M, Belay G, Mulkey S, Poland J, Sorrells ME: QTL mapping for yield and lodging resistance in an enhanced SSR-based map for tef. Theor Appl Genet 2010, 122(1):77-93.
  • [48]Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007, 24(8):1586-1591.
  • [49]Gaut BS, Morton BR, McCaig BC, Clegg MT: Substitution rate comparisons between grasses and palms: Synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci U S A 1996, 93(19):10274-10279.
  • [50]Swigonova Z, Lai JS, Ma JX, Ramakrishna W, Llaca V, Bennetzen JL, Messing J: Close split of sorghum and maize genome progenitors. Genome Res 2004, 14(10A):1916-1923.
  • [51]Paterson AH, Bowers JE, Chapman BA: Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci U S A 2004, 101(26):9903-9908.
  • [52]MISA - MIcroSAtellite identification tool [http://pgrc.ipk-gatersleben.de/misa/ webcite]
  • [53]Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG: Primer3-new capabilities and interfaces. Nucleic Acids Res 2012, 40(15):e115. doi:10.1093/nar/gks596
  • [54]Koressaar T, Remm M: Enhancements and modifications of primer design program Primer3. Bioinformatics 2007, 23(10):1289-1291.
  • [55]Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP: ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 1999, 400(6741):256-261.
  • [56]Plaza-Wüthrich S, Cannarozzi G, Tadele Z: Genetic and phenotypic diversity in selected genotypes of tef [Eragrostis tef (Zucc.)] Trotter. Afr J Agr Res 2013, 8(12):1041-1049.
  • [57]Assefa K, Aliye S, Belay G, Metaferia G, Tefera H, Sorrells ME: Quncho: the first popular tef variety in Ethiopia. Int J Agr Sustain 2011, 9(1):25-34.
  • [58]Wicker T, Matthews DE, Keller B: TREP: a database for Triticeae repetitive elements. Trends Plant Sci 2002, 7(12):561-562.
  • [59]Salzberg SL, Yorke JA: Beware of mis-assembled genomes. Comput Appl Biosci 2005, 21(24):4320-4321.
  • [60]Nawrocki EP, Kolbe DL, Eddy SR: Infernal 1.0: inference of RNA alignments. Bioinformatics 2009, 25(10):1335-1337.
  • [61]Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, Lindgreen S, Wilkinson AC, Finn RD, Griffiths-Jones S, Eddy SR, Bateman A: Rfam: updates to the RNA families database. Nucleic Acids Res 2009, 37(Database):D136-D140.
  • [62]Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A: Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res 2005, 33(Database issue):D121-D124.
  • [63]Chan PP, Lowe TM: GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res 2009, 37:D93-D97.
  • [64]Han Y, Wessler SR: MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic Acids Res 2010, 38(22):e199-e199.
  • [65]Oki N, Yano K, Okumoto Y, Tsukiyama T, Teraishi M, Tanisaka T: A genome-wide view of miniature inverted-repeat transposable elements (MITEs) in rice. Oryza sativa ssp japonica Genes Genet Syst 2008, 83(4):321-329.
  • [66]Assefa K, Yu JK, Zeid M, Belay G, Tefera H, Sorrells ME: Breeding tef [Eragrostis tef (Zucc.) trotter]: conventional and molecular approaches. Plant Breed 2011, 130(1):1-9.
  • [67]ABCIC: Effects Of Climate Change On Eragrostis Tef In Ethiopia: A Call For Action To Avert Food Security Crisis. ABCIC Policy Brief No1 2011.
  • [68]Wilson PB, Estavillo GM, Field KJ, Pornsiriwong W, Carroll AJ, Howell KA, Woo NS, Lake JA, Smith SM, Harvey Millar A, von Caemmerer S, Pogson BJ: The nucleotidase/phosphatase SAL1 is a negative regulator of drought tolerance in Arabidopsis. Plant J 2009, 58(2):299-317.
  • [69]Manmathan H, Shaner D, Snelling J, Tisserat N, Lapitan N: Virus-induced gene silencing of Arabidopsis thaliana gene homologues in wheat identifies genes conferring improved drought tolerance. J Exp Bot 2013, 64(5):1381-1392.
  • [70]Akiyama T, Pillai MA: Molecular cloning, characterization and in vitro expression of a novel endo-1,3-beta-glucanase up-regulated by ABA and drought stress in rice (Oryza sativa L.). Plant Sci 2001, 161(6):1089-1098.
  • [71]Jiang H, Li M, Liang N, Yan H, Wei Y, Xu X, Liu J, Xu Z, Chen F, Wu G: Molecular cloning and function analysis of the stay green gene in rice. Plant J 2007, 52(2):197-209.
  • [72]Nakashima K, Kiyosue T, YamaguchiShinozaki K, Shinozaki K: A nuclear gene, erd1 encoding a chloroplast-targeted Clp protease regulatory subunit homolog is not only induced by water stress but also developmentally up-regulated during senescence in Arabidopsis thaliana. Plant J 1997, 12(4):851-861.
  • [73]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic Local Alignment Search Tool. J Mol Biol 1990, 215(3):403-410.
  • [74]Xu JH, Messing J: Amplification of prolamin storage protein genes in different subfamilies of the Poaceae. Theor Appl Genet 2009, 119(8):1397-1412.
  • [75]Tatham AS, Fido RJ, Moore CM, Kasarda DD, Kuzmicky DD, Keen JN, Shewry PR: Characterisation of the major prolamins of tef (Eragrostis tef) and finger millet (Eleusine coracana). J Cereal Sci 1996, 24(1):65-71.
  • [76]Fasteris - DNA Sequencing Service - Swiss quality [https://www.fasteris.com/ webcite]
  • [77]Functional Genomics Center Zurich [http://www.fgcz.ch/ webcite]
  • [78]Advancing through genomics [http://www.macrogen.com/eng/ webcite]
  • [79]FastQC [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ webcite]
  • [80]Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J: De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010, 20(2):265-272.
  • [81]Morgulis A, Gertz EM, Schäffer AA, Agarwala R: WindowMasker: window-based masker for sequenced genomes. Bioinformatics 2006, 22(2):134-141.
  • [82]RepeatMasker Open-3.0 [http://www.repeatmasker.org webcite]
  • [83]Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B: AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res 2006, 34:W435-W439.
  • [84]Korf I: Gene finding in novel genomes. BMC Bioinformatics 2004, 5:59. doi:10.1186/1471-2105-5-59
  • [85]Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997, 25(5):0955-0964.
  • [86]Schulz MH, Zerbino DR, Vingron M, Birney E: Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 2012, 28(8):1086-1092.
  • [87]Fu L, Niu B, Zhu Z, Wu S, Li W: CD-HIT: accelerated for clustering the next-generation sequencing data. Comput Appl Biosci 2012, 28(23):3150-3152.
  • [88]Edgar RC: Search and clustering orders of magnitude faster than BLAST. Comput Appl Biosci 2010, 26(19):2460-2461.
  • [89]Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J: TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 2003, 19(5):651-652.
  • [90]Iseli C, Jongeneel CV, Bucher P: ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol 1999, 7:138-148.
  • [91]Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS: Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 2012, 40(D1):D1178-D1186.
  • [92]Schnable PS, Ware D, Fulton RS, Stein JC, Wei FS, Pasternak S, Liang CZ, Zhang JW, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, et al.: The B73 maize genome: complexity, diversity, and dynamics. Science 2009, 326(5956):1112-1115.
  • [93]Doust AN, Kellogg EA, Devos KM, Bennetzen JL: Foxtail millet: a sequence-driven grass model system. Plant Physiol 2009, 149(1):137-41.
  • [94]Vogel JP, Garvin DF, Mockler TC, Schmutz J, Rokhsar D, Bevan MW, Barry K, Lucas S, Harmon-Smith M, Lail K, Tice H, Schmutz J, Grimwood J, McKenzie N, Bevan MW, Huo N, Gu YQ, Lazo GR, Anderson OD, Vogel JP, You FM, Luo MC, Dvorak J, Wright J, Febrer M, Bevan MW, Idziak D, Hasterok R, Garvin DF, Lindquist E, et al.: Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 2010, 463(7282):763-768.
  • [95]Sakai H, Lee SS, Tanaka T, Numa H, Kim J, Kawahara Y, Wakimoto H, Yang C, Iwamoto M, Abe T, Yamada Y, Muto A, Inokuchi H, Ikemura T, Matsumoto T, Sasaki T, Itoh T: Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics. Plant Cell Physiol 2013, 54(2):E6-+.
  • [96]Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S, Childs KL, Davidson RM, Lin H, Quesada-Ocampo L, Vaillancourt B, Sakai H, Lee SS, Kim J, Numa H, Itoh T, Buell CR, Matsumoto T: Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 2013, 6:4. doi:10.1186/1939-8433-6-4
  • [97]Katoh K, Kuma K, Toh H, Miyata T: MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 2005, 33(2):511-518.
  • [98]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23(21):2947-2948.
  • [99]Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22(22):4673-4680.
  • [100]Guindon S, Lethiec F, Duroux P, Gascuel O: PHYML Online - a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 2005, 33:W557-W559.
  • [101]FigTree [http://tree.bio.ed.ac.uk/software/figtree/ webcite]
  • [102]Li L, Stoeckert CJ, Roos DS: OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 2003, 13(9):2178-2189.
  • [103]Felsenstein J: PHYLIP - phylogeny inference package (Version 3.2). Cladistics 1989, 5:3.
  • [104]Alix B, Boubacar DA, Vladimir M: T-REX: a web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acids Res 2012, 40(W1):W573-W579.
  • [105]Han MV, Zmasek CM: phyloXML: XML for evolutionary biology and comparative genomics. Bmc Bioinformatics 2009, 10:356. doi:10.1186/1471-2105-10-356
  • [106]Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O: Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 2008, 36:W465-W469.
  • [107]Gonnet GH, Hallett MT, Korostensky C, Bernardin L: Darwin v. 2.0: an interpreted computer language for the biosciences. Bioinformatics 2000, 16(2):101-103.
  • [108]Rice P, Longden I, Bleasby A: EMBOSS: the European molecular biology open software suite. Trends Genet 2000, 16(6):276-277.
  • [109]MISA: MIcroSAtellite identification tool [http://pgrc.ipk-gatersleben.de/misa webcite]
  • [110]Pedruzzi I, Rivoire C, Auchincloss AH, Coudert E, Keller G, de Castro E, Baratin D, Cuche BA, Bougueleret L, Poux S, Redaschi N, Xenarios I, Bridge A: HAMAP in 2013, new developments in the protein family classification and annotation system. Nucleic Acids Res 2013, 2013:584-589.
  • [111]Sigrist CJA, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, Bougueleret L, Xenarios I: New and continuing developments at PROSITE. Nucleic Acids Res 2013, 41(D1):E344-E347.
  • [112]Bairoch A, Bougueleret L, Altairac S, Amendolia V, Auchincloss A, Argoud-Puy G, Axelsen K, Baratin D, Blatter MC, Boeckmann B, Bolleman J, Bollondi L, Boutet E, Quintaje SB, Breuza L, Bridge A, de Castro E, Ciapina L, Coral D, Coudert E, Cusin I, Delbard G, Dornevil D, Roggli PD, Duvaud S, Estreicher A, Famiglietti L, Feuermann M, Gehant S, Farriol-Mathis N, et al.: The Universal Protein Resource (UniProt) 2009. Nucleic Acids Res 2009, 37:D169-D174.
  • [113]Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, Bernard T, Binns D, Bork P, Burge S, de Castro E, Coggill P, Corbett M, Das U, Daugherty L, Duquenne L, Finn RD, Fraser M, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, et al.: InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 2012, 40(D1):D306-D312.
  • [114]Claudel-Renard C, Chevalet C, Faraut T, Kahn D: Enzyme-specific profiles for genome annotation: PRIAM. Nucleic Acids Res 2003, 31(22):6633-6639.
  • [115]Delcher AL, Salzberg SL, Phillippy AM: Using MUMmer to identify similar regions in large sequence sets. Curr Protoc Bioinformatics 2003, Chapter 10:Unit-Uni3.
  • [116]NCBI/Blast [http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastHome webcite]
  • [117]Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA: Circos: an information aesthetic for comparative genomics. Genome Res 2009, 19(9):1639-1645.
  文献评价指标  
  下载次数:13次 浏览次数:17次